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ABSTRACT

Auralization technology is devoted to reproducing the sound environment of real spaces
in a virtual venue through digital signal processing, enabling listeners to achieve consistent
auditory perception under the real space. It has been well recognized as one of the vital
technologies in architectural acoustic design, auditory research, and virtual reality experiences.
Implementing auralization requires modeling sound sources, acquiring the impulse response of
outdoor or indoor sound sources at the receiver, and then synthesizing and replaying the signals.
Spatial sound reproduction is one of the key components of auralization, and higher-order
Ambisonics (HOA) technology has demonstrated enormous potential in achieving high-
precision and immersive spatial sound reproduction due to its physical sound field
reconstruction capability. However, Ambisonics-based auralization reproduction face two main
challenges in practices: (1) On the technical aspect, there is a trade-off between loudspeaker
quantity and reproduction accuracy, and the algorithm requires spatial-uniformly distributed
loudspeaker array, which is difficult to achieve in reality; (2) On the perceptual aspect, the
subjective perception of reproduced virtual acoustic environments remains unknown, especially
regarding the higher-level perceptual dimensions, including speech intelligibility, timbre,
direction perception, spaciousness, and etc. These two issues are interrelated, that is, the
perception situation under virtual reproduced environment needs to be determined. After that,
the system can be optimized or simplified with targets. Therefore, the thesis conducts the
following research, focusing on the optimization and perception evaluation of HOA-based
sound field reconstruction and auralization:

First, a HOA auralization reproduction platform with multiple-channel loudspeaker array
was established. The system implements a complete chain of signal processing, including
Ambisonics spatial sound reproduction, indoor sound field spatial impulse response synthesis
(combined with geometric acoustic simulation software), multi-channel equalization and
playback, as well as multi-source scene synthesis, sound field analysis and spatial sound field
record modules. This system is one of the largest HOA reproduction systems in China,
providing hardware and software foundations for subsequent research.

Second, the effects of reproduction order on reproduction error and subjective perception
were explored. In objective aspect, the effect of Ambisonics reproduction order on reproduction
error was first inspected by simulation, including sound-field reconstruction error, binaural

received signals, and energy spread issue. After that, subjective listening experiments were
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conducted to investigate the impact of Ambisonics reproduction order on the speech reception
threshold (SRT). SRTs of listeners were measured under different orders of Ambisonics
reproduction conditions. The results showed that SRTs decreased with increasing reproduction
order, and results of 9th-order reproduction approached the results of the reference level (single
loudspeaker playback). Low-order systems (1st and 3rd orders) reproduction suffered from
spectral distortion due to multi-channel crosstalk, significantly increasing SRT values, which
indicates degraded speech intelligibility. Additionally, low-order systems were also affected by
the spatial release from masking effect caused by energy spread, which enhanced speech
intelligibility in noisy environments. This study highlights the importance of high-order
reproduction systems (e.g., 9th order) to ensure the reliable perception of speech signal under
virtual environments and provides data references for system order selection.

Third, a new Ambisonics reproduction algorithm for layered loudspeaker arrays was
proposed. The algorithm focuses on addressing the difficulties that Ambisonics reproduction
requires spatial-uniformly distributed loudspeaker array. It combines 2D Ambisonics with
vector amplitude panning technology, reducing the system requirements for loudspeaker
quantity and spatial uniformity and increasing the order as much as possible, hence improving
reproduction accuracy in the horizontal plane. By simulating the binaural signals and sound
field with head-related transfer functions and sound radiation functions, it was verified that
compared to the 3-D Ambisonics, the virtual sources synthesized by multi-layer Ambisonics
were more like the target ideal sources.

Fourth, subjective listening experiments were conducted to compare this algorithm with
existing mixed-order Ambisonics algorithms and the AIIRAD algorithm. Subjective
localization and sound fidelity comparison evaluation experiments showed that the algorithm
proposed in the thesis had significantly lower localization errors than existing mixed-order
Ambisonics and AIIRAD algorithms in the plane with real loudspeaker array including
horizontal plane and 30° elevation plane, the sound fidelity was also superior to others.

Fifth, experiments were conducted to investigate the impact of the elevation range and
reproduction accuracy of reflected sounds on spaciousness. The experiment first reproduced a
virtual concert hall environment with auralization, subjective perception evaluation was then
conducted to explore how the elevation range of reflected sound reproduction and the degree
of energy spread (order, algorithm) affect spaciousness (source width, envelopment). Key
findings of experiments included: 2D reproduction significantly reduced spaciousness
compared to 3D reproduction, but auditory was insensitive to the specific elevation of

reflections, with little impact of different elevation ranges on spatial awareness; height
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information of both early and late reflections significantly contributed to listener envelopment;
energy spread of early reflections had a greater impact on spaciousness, especially in complex
indoor acoustic environments. This study explores the influence of reflected sound elevation
information on auditory perception, offering new possibilities for optimization of auralization
algorithms. Additionally, the experiment verified the reliability of the proposed multi-layer
Ambisonics reproduction algorithm in spaciousness. The experiment is dedicated to further
explore the possibility of simplifying auralization systems by considering the features of
auditory perception.

This study establishes a comprehensive HOA auralization system that can be applied to
various architectural acoustic applications scenarios. The thesis deeply investigates perceptual
patterns in different virtual sound environments, and the proposed multi-layer Ambisonics
reproduction algorithm effectively addresses the reproduction challenges of non-uniform arrays.
The research findings of this thesis provide theoretical foundations, experimental data, and
technical reference for applications of HOA in architectural acoustic design, soundscape

research, and virtual reality, contributing to the advancement of HOA auralization technology.
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Zi bphid, 3T Ambisonics W WT AL B BUR SRR SR AW 7 5 N TR R ER
ITE 70, (BAESERR RGESLIL NN I, 75 25 847 P a5 O BE B o Pl
FBORE AU AT R BT S S DL, R S PR R UM i A I e BT LR

1.2 25 [8) =% N

T 5 2 G K 0 A P I B T % 7 5 B SE AL R 7 R T A i
HOEWE K, AEEER S RIS, ML, BHEARE SRSk E
ISR T IR . ERA I VR AL RS T, A B T b Tk FAR, BUBER el .

2% W7 5 B o P R A I B, LA O 5 B A R Tk AT R, R RS X H R
P55 ) R BRI 50 L7 R R A A I T R — 5 5 IR AT 5 o A K HR 0L 28 ]
GEUTFUATMER: (D EEELSHE: () WM () Wi-IF
o AR . WUEEAS ()T 52 75 B N SR 7E 2 2% 0 H 6 7 3B R 3RS B A% 0o WL
Bz, AE TR AL 5 R G 2 S T RO,

1.2.1 W5 RS

NIV 5 2 40 5L AN 7B 25 R B, T R WIEANE . P H S RE A
2 B 1-1 Fios) U (D) ANH: SH R EES FE A, RS HE S
WIS ST, BIERENTE A, DOE L — 4 0 7 R A AR S T



o ik

(2) HH: PHOFEHBELELEREE, SR EREN MRS, MR SIRIRE)
SRR AR BT B (EE =R NED k3, IRSEE P E R = A H
R F g . X BT SRR R 7B BTUCRCIIPER], B8R (RILGIAED hikah s
AN TWEW GREPTRIMED ksl (3) WH: WHEEEOSHE, AT
MIRBNE 5 FeA N U E BRSSO ZE BENLAY R S0 75 3R 3l 51 ke FR g rh 2 R AN [ X
s R RIANRISIAD BIARS], e R Wbt P =6 200 4 L3I 2 ) P58 A Fi s ek ik vk
e EmEMERY, A KINACE ST T W ot B o

FE 22 [ E LA AR GERIBEFEh, JEFE T B h H USRI & s “ &
7 BN WARAERGE D BGR SRANEOR R E N F . RO, It RS IRYE
R L — AR W SE A XTI A IR R AR, KN HERSE S IEW AN
RS NP Nt o & S e i T B 1 D707 P S NS U 1 = A e T N 8
ASCHR T R EROE T, YRR S B S RS S R T, A R SE R A R
EH W T35 eIt AN & HRT N X 75 45 5 (1 Ab

(a) HhH-

i EEWA 2
Hi

. '_ > < Sy L
= A
HJ5 b e YL
) R RN
9 (3 /N -

K 1-1 s Raciim e, 1B H WikiJournal of Medicine!'?!

Fig. 1-1 The cross-sectional picture of the auditory system, modified from WikiJournal of Medicine
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122 =[BT 5e

W50 RGN P AR R AL R U DR s TR Y A T
23 (W S T U R G — AN E TN RE, B AR X RS R I U7 1 DA R PR B AT . T
KT BRI T T, R H R A IR B SRR, W A IR LT 30 UL,
WAE—BA N, TEAWS T, Wron a8 e A ZARE LT DU B LR 22 DU ) 22
(Interaural time difference, ITD) Zk%. X H-F 2% (Interaural level difference, ILD)
LR R L Eh LRI (ITD, ILD &R WK 1-2) -

(1) ITD £k : A[FEJ5 A S HUA M R H 2 BE B ZE AN, X R SE I ) A
A, AEHE A S4B AR ITD. W FRSEMEE S, itk S WS 51
FHA. 2% (interaural phase difference, IPD) 32| ITD {55 &AL L 2n AR, 24
P IR KN TS ER ST, AL AT RE i 2n (i FRAMEES] 00 , $5 ITD £
TR B ITD R 2 —MEAL R, FEAE 1.5 kHz DL AR EEEEH .

(2) ILD ZR&: T SKE0nt & IR R, P 8 A 28 9 ) o 222 031 2 Bl 7 U
Tia AR, X MR EFRNILD, & XNAEH5HEE R M. 455
AR TSk AR, B TATSME, AR & 52 NSRS s, Rt ILD & —
ANhESEMIEER (KT 1.5 kHz) . [, ILD $EBEHRBE R, & — 5%
P IR, (OB SRR YA TS 5 10 ILD R AE A e A AT 5

(3) W& ITD M ILD 2k A ReHl TIX /B 5 WA NS A, MK 1-2 AT LA
& BT SRR E B ITD A1 ILD JeA—%, (U@ ITD A ILD ik X HME 5 1T fE 5
ERRTTmESR, X R RO IR ELHE A . EAESERRT, N RG] BLX
AT A, MRS S5 KBS () IAEDTTTINy, BB S KX &
(RIS, X P B s S o A BOR VB R, X R A R (LA 12 (o) ) =T
JG EFAFEMAETLR., A& 4 kHz £ 4 F 16 kHz 24 KR TEIE 4 Pl
P2, N15N2, #ihJy@Wrie 5 Ge AW A J5Am f Az O 2k g U100 i sem A T
FEH AR o, H BB SZ HERIR . AR RS sgma o, IF B A HER
B, B s R —Ms R M S E AL 2

(3) BIBKR: ER=ADERUELE A IR A AL BEA SRR, ) DL At
—IEMEAAKYE, BERRNESAR. HAEY, KEESN, 1TD 5 ILD b ki 5
B RAEBN, X—ERRWEXSEIETT A EMAEEEM . 45T XRE, &
AITD. ILD JoiE X 43 #i J5 Ao b (R ELHE in) A5 AR ok, 58 A AR B2 BAT BORER THIA,



0° 0°
30° 330° 30° 330°
600 15 T
60° 400 300° 60° 10 300° 51
7]
90° 270° 90° 270° =
120° 240° 120° 240° 20
25 T T T
150° 210° 150° 210° 102 10° 10*
180° 180° M (Hz)
(a) ITD (b) ILD (c) WELR R

B 12 MHESERZRR: ITD. ILD 52k (55— 5 " Hki(g P1. P2; 55— 25 Ik
AE N1, N2)

Fig. 1-2 Binaural localization cues: ITD, ILD, and spectral cues (the first and second spectral peaks
P1 and P2; the first and second spectral notches N1 and N2)

Wr ot R Gk e BN R R KBRS, AHECTT A e A, PR YRR B RN RS L BEAIR, B
B2 HER LhWaFFEIESEEREER) W, w2 E A K EA 15 212 9% 1) 5%
TS, YRR B e A B R AT LAy N =R, BHA R MHLRUKIELER:

(D) BHZLR: PHERBEMEAROEA TRE. HERWEL (Direct-to-
reverberant ratio, DRR) DL 2R R . HAmE SRR (FIRMEREE r 1% 1/r L)
TERO S H 1 o AR R S A 2R U, (H R P (RIS R A B (R B AT R
R, LA H LR — MM MR R ERA RS A RRmEIA S, T SO T
P, AR AR S AR RS, B BRSSO A ) RE R AP A PR B AR T 2R
DRR A H W 7 5t E 25 1) B PR 3R P00, B e A IS A R 2R, A TRAE Bl
SKARES, BT A BRET v, RS SRR S AR, IR A A X T A 43 1) e
SR EE RN, pEAh,  SHO A B I SO T T T AT, AR S ) o0 AR
R T AILEVE R, AR YA A I E B B AR R B R R AR AR, X AR L
REEAE S YR B I RN 2R R

(2) WMELR: AR SRR, PRk BUH: (i ) 22 ) L9 AN B b 3 R AR AR
e, ITD XS BR B EAL ) LT3 ok 102 75 Y5 Sk ARG i, Sk A H B A FIAE AN [R]
FEURER B R R /NANR], 3B ILD BEEE B AR . BRI, 5 A YR R R )
— AL 75 e BE PR B G ORI, SN YA — A A R AR R B AR K, SR 1 U85
ILD i B B3 KM g oK) SR s 21X B A oA H— s &, REH RIS A
5 krbAb A (REIFSRER &) B EUAE . OUH 2R 28 S S0 g A= 9 ) PR 8 S AT AT
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BART R AE 7, ABAS R 78 H A S50 08 2 (0] 1] P2 8 o7 o 1k B4R THIE R A
G Es R,

(3) ELR: DSERRUFES I s ER s LN 2 % 85 (Doppler
frequency shift) BRI AN A YRR T, PR A A AR SRR I 9 B A AR A 8 SRR 7 A
acoustic tau R0l DAR A ZE RN, RIFEANFEIREES b, A UE sl B AL f 0 H:
LRFRARMANRE, IR T P B B A AT 7 AR O L O B R E LA R DR

1.2.3 Z[B]EN R RN

FECERAE IR B AR, SRR b5 18] Y 6 78 2 IR B AE AR K SR 7, I T 3 R ¢
ANREXT AN PR AT B AL, AE T O 5 G R 8 78 75 IR A LR (R R A b, 0 T P
AR SR G P TR S8 T s B A 2 W i B G N 80, T B R R I BT, 0 AR T BRI B
%, RS R SR R B RN R 2 —. Beranek AWK, & IRTNEREZE
AR R FE: FEERIE (liveness)  EMIE (clarity) . EP)E C(intimacy) . 25 ]
J#&% (spaciousness) « JmFE/E (warmth) 1M E (loudness) 91, Hirr, 523 75 Jy )
SOMR RN AR T T2 SR A AR, A ARG 5 AR T LR A i B ) 4 JE 2 — DO gk
WT 5 B A AR SR ) E W, & NIE R % TR W B0 SR PR ik 4 FE A 56 4 — 3
SXof - 2% AU B 32 00 RN PR FE AT b T LR D5 R B B

HATHBE Sy, AR A A B MAEAURTEE (Apparent source
width, ASW) LLIWrAcEL I (Listener envelopment, LEV) B2, ASW 5 5 I 78 W J&
B HSERR RIS, LEV faWT At A5 & ISR . X & A A 500 1)
RATRERAG O, HAp R ASW A ST E VR %, T LEV EE 25 Mk
RI5EMT . 1SO 3382-1 G053 A F - 300 1) G 52 LL J 1 #1500 ) 75 68 L, SRVT-Aiki 75 V5 B8
& ASW A LEVES, e, J 0 K158 SUA:

0.080
/ pr(t)dt
0.005

Jur = 50w (1-1)
/ p*(t)dt
0

L, H5%€ SN
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/ p3(t)dt
0.080

/ pio(t)dt
0

Hrb, pp A p oA 2RI AE G5 [ HR S\ 2 T A% 75 28 FUJC T8 4% 75 22 S 1 5 1K s poo
FoRIEHFE SR IEE IR 10 KA ERFE. Mo, AR HXE A AR R
(Interaural cross-correlation coefficient, IACC) 5 ASW #1 LEV B & & KAH = 1EBY,

137 [EEER
1.3.1 4R &

SH MR Zoe T E R AR, ASRSENET, HWRRRU, S5 AR
RYJNERAKR, BRALKRZE R AUNE] 1-3 s, %A FR R 8 X5 K53 25 1) 5 AH S 7
K R BRAB AR 2 5 SO TA] 6

L,=10lg (1-2)

VA
/\J:jj

0,9,7)

AT
ot

20 i 5,

;

] 1-3 BRARFR 5
Fig. 1-3 The spherical coordinate system
BRALAR B AT — SO B ARAR (O, ¢, r)For, Hb: 0 Jihif, 6 Bl N
0.<[0° 360°1, 0°J7 hiff 46 1A IE /T 7, 90°J5 i f ¥ Ml 22l s ¢ M A, JLBEA
¢ [-90°, 90°], 0°A/KFIH, 90 MM NIE EJys r R 1] sl B A bR R R AU BE
B, r=00 Acrh, WJCRPERUCHT, W SRR x BIEJ 1A, ZEHJTICA y BiE
Jrl) e AZERAAAR R T AIAAR S B R IR ARRR R AR (2, y, 2) Fed AT
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z =rcos(0)cos ()
y=rsin(#)cos(¢) (1-3)
z=rsin(¢)

132E%

FEEEEANNAEES L, —2WE ERE L, RV ERRS) DLk i T A 185
AR, TR ER @ AW R GO W e AR R X A B
EO PR g 1t 7 A) P AR SE S OO B il

O HYIRIRS) S R B R R A T A, MR I, F RS R p BEAT R,
AL Pascal (Pa) o P IKHIE ONEEBUE AHN TR S U e &, BT
JEBARALIE R H R, 8 RO R A T (sound pressure level, SPL) #fiid
JERAN, HHEINEN:

=
}:1:[
=
}:1:[

SPL=2010g10(i) (1-4)
Hpo WS HEF R, WRANEAETSS AR 1 kHz 205 F /Nl 885 RIME, BB fEbR
AE IR %A N N2 X107 Pa .

FEYRAE 23 [A] FP AT B A 7= A TR RS s A N TR)FH 2 1R B BR 85, AT DA e SR A U8 3 77 23R
3. RGO, A BEAT F 0w O 5, X RN B B
(free field) 25fF. HHHFLLT QAW FEATCAFERTE B IR (SR 7823 (8 4T
BB QBRI RN

- jk|7,— 7

e
dr[F,—7

P(Q., Q) = (1-5)

Forf, B, P BIAEVE, BeE AU E R (HRRAFR): k=2nf/c, w=2nf
SRS B, ¢ M, A
IR BN SR, B |7 |7 I, 3(1-5) AT LR T T e B Ao

P(Q,Q,k) =e H0 (1-6)



B ik

Ho, EONIEBURE, k=k7,, ALAER], PR g, 7 R N B R A
2, HHEAEAL R 28 S5 R ik m B B s, A LGP E . AR 2EH
W5 o 32 B P T R R A g B s AL
133 WNEEK

BEE N NEWLI T I K R 58 f, XUCHZS () B R il HAR AR 5 ks FE (R 4R 2
BN H R IZ A R 2 — o XUCH S [B] A R B A B Dy, 0T E H3g R AL T
ERTT I, (0,,h,r) FIFRAR SR S, 1275 Y5 2 B8 1) A ik 72 w7 DU SkoAH A% 4

PR%L (Head-related transfer function, HRTF) #E4THEIAR:

_ PL(Qs,f,a,)
R (1-7)
Hp(Q,f,a) = W

Hrh, Py, Py, Py BIRNEHEEERBIAET ., AHSkbo (BIFLEED , AR £
KPR AT B e Hy, Hp 8538 T FIEMAS RO B AR B2 4 BB B, 2 8 N Ak
GEMFEIR S WA RL . a AHE ARG RS S 8E . BEEL T H QI TES
x(), MHEAHL @B IREE S »(0)9:

ya(t):ha(t)*x(t)a a:L7R (1'8)

Horp, h(t)’y HRTF H)EERN B 20, B SKAH 5 Bk i B (Head-related impulse
response, HRIR)D , I8 fdf B30 AR #1150 45 5]

HRTF 3% 2K 35 P EEVE AT &, RS0 1 B A 3 A 1) R 1AL 5 AN [
J7 ) HRTF MWEPS, SEhrffi ] HRTF 47 XUCH a3 e, T 3R1G 58
TP B ROSCR B I 45 R, TR R SR L B, A S AN F 1 H AL R R
BEAT AR PR . T A LA N AR T DU ROy — dE A dar, T LS B 0 BT
BACHATICHE, thah, &7 28 FH HALE K3 (Headphone transfer function, HPTF)
Xof HLR 75 B T A £ (R AR M S AT 3007, IR T AR (R sk R 8 6 AL

1 Z aaaaaaa l + Zheadphone

G (1-9)
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Hrl, M, Zearcanats Zneadphones Zradiation 73 W IG5 S PN, CEE /& 1) , HIEF
P, HAHUHGT S HIEAL M B 4R BT, HPTF 783 P HAE 115 30 i) B LS
Wi, 4% b IR ARSI i R 45 2R AT LR A A 2 S AL IR 5

W LVER], — B3RS T #8504 HRTF,  BI RS H B LR J5EA 8] 07 ) 75 3 A6 4
FIWE R, SEPORE RS E . (A HRTF 5 AEMEBEMA S, BN R,
S B A FpoE AR U AN R HRTF . 3 A JEAME L) HRTF 24T XUCH- il 2 5
BUENLITEREMI T I, &5 P EREIRE . SkrPOsg L5 R dn T ROt R kg i
] HRTF de 2 XCH %G, ASCH AT U5 7 — Rk 2R B A5 R UL A ) 55
2347 HRTF AL e #1108, Bh4h, HRTF BB T AR B RS PR XCH RS s
ERE S, B AR 23 18] S BBCR Gt AL SR W SE it ST AL, 0 A 22 v

1.3.4 ZBRIAEEA

XCHAS 5185 R el BT B, 7ESL bRl sh A2 7E — e I R . A 5
A IR 25 SIS IR P N, T B AT I R A T I 2 s . BT
O B S 2 BT 2 B B A GRS R G e R RSk, 2 H AT AR
MR —, GOIEARTICEBIAZEH . 5.1 BEIRGEAH . DL E KA 22.2 @R
LeF R ESE . IWRARGAEAMAH <T@ s, @ w2
WS S I A S AL, RGN 2l Bk A, AR AR

NOE RS FE (stereo) K P B AENT 35 1T /7 B B X IR — X 4 2%, Abhs 73 i) A
(— 6o, 0°) 5(8,,0° , FEIHITALANLT — 0 ~ 0o I REIN VR o 248K T S VR A T 7
Py e B, X NALE 7 R A% LR R S R AT E A H AR T [ S (A AR AR
JBCR R BT P P 2% Z TAIR, AT DU i B S A5 SRR, LRI A B R A
PR T P 7 2 Z I I AL, S P i A5 5 M LS BN [ R U 9077 ) 17
TER A NE (panning) i

TEXCGE B AR S LAl b, K 28R 7 8 R, B8
Jl— AN A P AR, RO Y I RE AL RE AR, T S AR = (] (1 R AL R
XA ) IR BN R R NG B (Vector base amplitude panning, VBAP) #Ji
R, WNT—H (ZA) EREGHERE, HHEER T Q0,¢,m), AT FRENT,

(R R A8H5), 7=[cos(8,)cos(¢,),sin(0,)cos(¢,),sin(p,)] ", T NHFEHEEGFS .

10
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BRI 7 1 R BN 7, , S U = A 7 Bt B 2 b, SR b
PR 2 A A, R 2 A S A,

R o Py
f= Qb (1-10)

[b1,b2,b3] :[?1,727?3]71?5
R USRS L, R E LR E AN T AR Ak, 750 3 55 AT 0 —
A b
b, b = o
C 1By, b2y b3) ]|

TG 2 A GRS B0 RAE T, BETI A 5 ki, B a a0 s DR
JBUNE BLARNS R Fek e T, ST A0 P ORI Lo 2 5 27 Ak 22 g 3o P2 O B A i B
I BE RS AERRIL AR ITD 2RI, e AER AR . SRR e szl fn T Pl i)
AGLE, 52 W L IS S B B, B A R DX (RFIXD B/

1.3.5 Ambisonics

Ambisonics A& —RFE T YL G H A F A EIR S, X T 2B S E R
g, VEEREMRANHGA: B AEZAERNGES, HEE - EXBNE
EHPR AR AR A SRR GUE T B A R A 2 ) e AL ROR 5 R B IX,
{7 3 B JRUATEAT 75 B KB 75 4

Ambisonics F Gt A SRy, K s P Y m~F T 3 AR VR A ) R AN A g, A
HAERRAANE RS0 T AR (BRIERED AT R, REMEHZ ARG RN E
I I o Ja W Bk = 3 (PR IR PR L 2.2 1) o Gerzon s F-$&HH T —Br
Ambisonics (First-order Ambisonics, FOA) , F LLE B JE I = BAS S (BN
Periphony) . FOA FRGAALHI VU7 75 S5 2047 225 (] A R AU S VR EL G, P 37 ARG
JEHIR, BAMR—M, FOA RGHEZHPNNRE M/S SR FERAGEARN —Fh =489
J& . Daniel & A*LL K Jot 5 NP 5T 1 — 30 5835 T Ambisonics RGTMEL, K FOA
VIREF SN, R RFEFNEH Ambisonics £4t (Higher-order Ambisonics,
HOA) . HOA HEJMEHE LMz m s, AAEmIAEAEESRE, FRNHEA
HEm RS, L9k HOA 193] 1) 2 K,

11
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1E 1.3.3 5 1.3.4 AR OUH Hj S 2 B IR Ge s s i0h, B (5 S 7E R 24k
FELEEBONE SRR, G5 N EERA R E K RS . Ambisonics
[ —AMEAR T B T 155 gm0 S RIS I FE, o 25 FH Bkl R ot 37t AT g, &
TN AR 47 75 2% B2 () A B AT e, AR IEIE S 5, MRORHLIG In 1 2% [A] S E i
R R Ve, B HRTF W47 75 280047 L, 8 S IS A B ML EAT XUH
Ambisonics 7 [A] 75 H i . Ambisonics R FEEGRIAZE, KHT RGN EBOEEERIL, &
B RGeS ECRE R B, HRRE R SRAES A LA 00, XA Lk
Y N, ML B B BUF T B ORI Ambisonics R4t .

Ambisonics H AR LA 4t 2 8 % 75 FRK) 5 — MRS, BEWT LI A R I U
Xt B ARFE G 5 TR J7 I Ambisonics BERLA R, BAREXT O IR AT = 4k
)7 ], BORMEIZIAEI M =4E (5 B . HIERE 51, Ambisonics 1554
RTEJE MG S B T N E 44, (HIEAL S Ambisonics H R S8 T LAR A 44T ) 45 ]
HRHOR, Rt N DL AL G S S AR, T AR 2 ST A A AR 1)
[F] B R A5 AR OSSR i) MI/S S i) 25 = o s ) e Sl v, SR A4S 5 I R4 N
N L SO B AT U R R RN, BT R R R AT . OTE T DU S R T
2 T Rk R B, SR T PP, BT Ambisonics $545 B8 L—Fh K 2 nl # 2))
IR &I 2SR A, e 5 (soundscape) AT T bt 52 B K ) ey 140481,

1.3.6 A&
W35 E R (Wave field synthesis, WFS) /&5 —FhigEMEAR, T HEHIEE
/K (Huygens-Fresnel ) B 1% S I 0 9 B3 75 37 1 s K)o P YR IBUR 1) 75 4 T DA b e B T b
PRI SRR R FE IR SE A A, IR S IR IR 45 A5 5 O E PR AT 75 R AE U275 R AL U 11
. MRHEERE R-ZIME LT RE, PG T D A0 P A s IR P9 A 75 3 T LA e i
D b7 e S B 5 4 g
OP (,f) Q,0,f)

__ [ oPQuf) _ 9G(2,9,,f)
r@.n=- 120 a0 - p@.n G2 an
Hop, (AR D WA, BN AR A MR R R B, G(Q,8, f) IR IR RS AR

Mg, EGoR, WORBEAM G T D AT B SES G (RIGR g A
we, BUPNE 0D MRS (RO WEE—T0 iRy, EEIR, 75

LIRS 5 154 i AL B A PR Y5 S TE ST R ) IR R AR R S AR IR, mRE

12
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SEAEMMI AR . ESEhR A SR e E T, ARS8 H8 R AR Ec &,
X FECT R B GR,  SERRIA BCE BN 5 IR IR TR KN AL DG, R
0 BRGNS, 35026 BIR £ = ¢/2 A1 . SEREBCEIRAEA 3 kHz 155
I, IR IRER AR 5.6 cm, /T — MR SR IR, X AR SERR
AT HE A SE I, o

FHEE Ambisonics B, WFS FIEHZ BA RV & X5, EFHZN7E SR
FEHZ, AREBUNFBAR. 272 RAE =425 AR AR A IR, BT &5 I U
oy A ST, XAEBSE R A AT RESEIL, Kk, HATX WES R4t
AT 9 2 B vh 7R KT T 25 8] 7S BB T P R 3 R RO R AT RESR BT A R R
BRI, WHFKPRAAARERSEET MMAERE, WFS RENTEERLEE LI
s, A H AT AEH T =N UL ER, Bk, A9FFRA Ambisonics &4t
BN EE 7 T B

1485 IAR
1.4.1 Ambisonics R E L ii#

U 1.3.5%5 ik, Ambisonics FEIRRGHI PN EE FEE: (1) REY RGEE HE U
A RO IBAR, EAEREZE: () RATRYGFEB[/MTN LHSIME, XIELRR
i ELASEIL . HATX Ambisonics 48RS Ty ) E B TRAE FIRBAN T

KB Ambisonics HJSUREE J7 [ FEVRRS, IS S A RKMBSA R, R
A KEM AR, &51EMREBATE . Daniel & F5 H i KRR & E LR & 1)
max -7 A S B G A 5 1) in-phase RACH,  DASR @I 5 40 10 W7 I8 2 e A 1 g
(W, 224 75 o FEEIEmax-rp RAGKERE B, AR — D RS54
WhaE, (FEBUGmE. TRE. HERE. BERXKENLSAHEIFESIRRMES.
HA RS ANEEAL, AR A 2RSS EA A I & R, max-rp N EM AR E
FHEG I8 Ambisonics B ARDY, (HAEARMERIX LA, max-rg fl in-phase #4= B
7 I EE R R 3,

S5, ML LA 510, Ambisonics HZR 5 L IR A AR
i FI R, A MK a5, ACRHI PR E R & (WL 2.2.3 799 .
Zotter 25 N2 i 454 VBAP Fll Ambisonics [] AIIRAD (All-Round Ambisonics Decoding)
B DB AR Ambisonics HE U7 P 4% 45 [A) 41 20 40 A7 [ R 15433, (BZ Sk RIINHH 5] A

13
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T VBAP HiERIEREG, — @R LR T Ambisonics AR EARENE, W RES FRKE
fitkRE. % —Fh Energy-preserving Ambisonics decoding (EPAD) My it {4 ] % i
43t (Singular value decomposition, SVD) [1)77 15 £ B i i FE 1 &F S8, 528 = il hs
FRER RO, PRAK T O 7 8 2 RE A SR 225K, Rl , i i BT 10 A i
TR S TSR R R D ERIRIERES b R SRR E AR ASEOY. (BAZ 77 kIR
T Ambisonics RS HIVIEILAY, FESSIEESI T, 7 I PEAS RS AR T RN AV, HOE
SEBRIT B R RCR A . Ak, IEATRAHT Ambisonics 5%, MREIALE = 4EH T
SRl e B 5INTE 2 il e, BEWEAE R R =423 [ EEURG LA TR 1, Fe ik
ST R 7 ) 73 H BT,

1.4.2 Ambisonics /& EHEYFEMIEMN

7% ) 75 B TR Gt 1) S s B JSO8CR 5 A A I IO MR AR OGRS AR 2k
(), —FHEE AT LS. FlU, Ambisonics R FEMISLhrAE R & M X AL E KT
BRI RIXERES . Oy T IR S ) ARG RO, 7 2 ET S
X TRCENERCR AT Pl . X R R G PP E R A S HAER: (1D Ry
WRESIIVEAY, MIREMHERE. S0%,; () FERMEDZITN, WHEFEERE. Ui
R, B, SimirEEE.
1.4.2.1 BRiREN

Ambisonics R4 &CE UM E IR AT X OK/NS I BB BAH G, Bl S
B, W E S HER Bt &4 . FOA RGEME N HERI UK, &AL SL56 R
FOA Z 41 & MRk H EM T VBAP R4, VL&t b T A F B B B
Ambisonics HI RS FHEM MR, RMEAFENESLANEEZRNHBL T, 50
Ambisonics T4 ] PSR H XUH B 2 M AR, fEA LSIEZRIER T, W72
HAE 18 M RGA g 3RAG 5 0UH BT 152 SO, Frank 25 A #7528 14T
1. 35 5 Ambisonics Hi¥, EM TR, BHEEME LA, & OAER ST S IRE
R 4T ] R s, X S B Ambisonics 2GR, Barrett KIL 75 9 B
Ambisonics [ JHZE L ARREEN, (R SEIR AR — AN P24 1R 8 A S5 02

Ambisonics FECHT,  HER O SRS LB A T AR 22 U 0 1R R R A KT N
Stitt 25 AN FWE A7 S0 R I, 7R FOA #HTE N, WrAvn] G2 sz 1) 5 st b &
JRUIE B AH S 1) R AL RS JRI03 kAR AR X3 5, KRR PR 5 i ) 25 W A B80T (19 4%
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pax’

B ik

FEER I L R, RIS L Ambisonics AIHERSHE X AN, (HTE
BRI E SR ae o, 52 W] DATEROR 1 Bl A 2 B DR SO 10 R 400 VR 7 e B8, et
FARIRAARRD J7 %, Frank 2 AN T KPIHIAF BB SR, max-rg Fl in-phase
A Ambisonics B RGTE M RN, RKIEMETE SRS N, max-rg T
AL Ambisonics 17547 — %€ IR i€ FLAERE BE ST, 1H. in-phase & e Ar AEREE N B
1422 FERESTHER

Ambisonics B IR ZE e it UK H R @, 427 Ambisonics FIFM & EET
W& e, WILATE— @ FE R b PR E S 7 B e 0566, #E— @B ¥ Ambisonics
b, AR, 2 T R R A S R A R T, 25 N R
PR IR I8 38 R, 3 8 BE K A 5 A0 2k 0, 08T AT e 23 38 K J0UME 5 1 R AR B

[67,68]

[}

X TR ORI SN BN G, B, YRR A TR A TR R e B ECSE
JREEAE, XLl B R P R RE 32 Ambisonics 540 HE S FE R0 . Thery 558 AXTEE
TWHE AW 5 Ambisonics WU b IS 5 4[], 45 2RK W] Ambisonics £E 75 T8
FEE AN G R R b5 XUCH RO TE B35 2 )] . Bargum 55 A FSESS %S T Ambisonics S5 il
N ENSINE R RS ISV Y0 R A 0 S =R I M e L a1 DR ERER AL i
HEAD 45 5 R SRR RN P 5L 9 P8 38 KT sl 1A 51T, SO st B, A EAR St
XUH-HJA, —Fir Ambisonics 5 -5 B R A SRR L A FLSRIE S 7 )i 22000,

1.4.3 Ambisonics RGEEFNFZHRHINZH

HAl, EWINCHE LR BAHE 7 AT Ambisonics PH I MUK AT T AL R 4
Neal #5371 T HE A FEAHLA 3 B Ambisonics BRI AT L RS, HER T EMFHEG
IR R B 2 B) SR 1) /7Y Favrot 5 Buchholz 28 A2 HJE T3 75 2% 16 5 18] m] W 4k

(Loudspeaker-Based Room Auralization, LoRA) R4, 1% ARG R CATT 8¢ Odeon 55

JUART 75 S B0 0] s 1) 75 S AT AU, R J5 50k S S 3R AT 72 ) P B T8, e o 2 00 0 A
T EE ) by R R S U EOA B SE ORI R TS T 3 By
Ambisonics B RS, WL fEH Odeon BAFTHEAFH 1) =k Ambisonics {55, L=
W R S R B

ER RGBS At R T, AR S S, IR,
LA AR % 32 R97E . Noisternig 55 A%:T EVERTims SER I AGE B, SEIL T
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B RT RS A4k, IR 3 B Ambisonics ZmfigiE AT H Y Schroder JFK (1)
Virtual Acoustics (VA) FIWrALHESR, lid i i i P i B 5 R 2B B 5%, seall
T SE AN, RIS HESE SR AL, A I 3517 Ambisonics ZbY B Seeber 55
N R AU T 3% A 55 B i (Simulated Open-Field Environment, SOFE) R4, fiiH]
JE FE YRI5 SE LA AT AR 5 TR S A, O SCRp WU E B BRIl /B 47 7 ds g

VBAP Ml Ambisonics B~ 2 Fii E R Tk, RN iZ /416 %& 1 CAVE YRR
B BHERER TN RE,  SEIUMLBE-WT 3 e D47 55 s IL7OL,

ITAEK, Ambisonics R G W N H T A MR R 2, HAZ OO ERE
Tl AR R AR A S = e S RS R FE S A, P AN SR B ie k. A
5P T O R RR F B, AN TERE S H Sk &, Ambisonics F 4%
XA AT AR S Y SRBIA HAEAT FE SIAE R B SR AT REMED). Davis 4%
MR 1 B Ambisonics 5%, fEF7H A il 8 M IE 7 75 4 K5 BICE U 5, SRk
THXT RS SRR R U8, SR, Hong 5 NiE—2DXTEE 1 B Ambisonics fa44 #
JEUH) P 55 5 SR B P S R, TEARELEL T AR Ambisonics BT 20 YRR 22 71401,
St —, AT 53— UG S A0 A SRR LS I, 1 = 4R o o B, A P R AL
P SO AT PR o) A8 8 e A PR A A P

1L4AMBARIN EZL

gE b PTIR, E N AMERIAC ST T —E K Ambisonics R R 48 I £ Xt
Ambisonics 7 HJK NI — R AR EIF IR T — M, BUETEREL F LA
e — A 2

(1) #iFr Ambisonics T J# Kot 7 37 5 H5 2 Jo WU ISR - X T i B
Ambisonics {1 T TR BN 73 T A 15 25 5 R WUEAT SR R, LA PR R EERIR T
BT 98 T M R 25 0] [ E1 I 06 75 A3 5 10 5 VR Rl S 7 5 0 BU AN B KB o & F
HOo AR S =R A 5N B, WHE S E S B, A AT O .
AR i, RN TIRE RGNS & & E 8, BAXN S RFEHITIRE,
(51 IS} h/>0f BE KR TR AT, I TR S S BR 2 R Ge I AL BT

(2) ZYEEIRMEIESE: Ambisonics 7G04 B0 7 17 T4 BF A — 48 7 1A ik
JIRB| =gz E L, (=% Ambisonics T T KBS MAK TS, SLbx
(1147 75 B B A A 2 ) R R A IR AR S0 AR (). B R A 0 A O X i S
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B ik

I H bR P SR R G0N e 1075 U5 e A AR T 1, D DGR AT 4 i 2K A (A 4y S
Gy K137 75 25 B A1 (1 8080

(3) CH M Ambisonics 44 B UV 0 L 5 PP Al . EEXT RS S04 2
Ambisonics HHUH#, CAHWFFTRE 7 — A%, WEEH Ambisonics 5 AIIRAD
Ambisonics F, AFEEBA AR F R RS HAEbR, BH AR AT
J& EWLSIE X EATREAT R GE G L ANIGAIE, 3K B R ) AR M B R I i A T R RIRES

(4) BAFEI R A B REMPLEE Gk HET, {4/ Ambisonics 4 SZHL
= A FE I T WA AR DG 9T 3 B R AR AE R SE AN AR AL . =BT Ambisonics =4k
H O 45 7 AR S o AT I TR R, E N SR B T A R AT A A B AH B KPS
AR, DR A B O 0 v BEAR B AT — e R FE I Ak 2 AT REI . (H E R BE AT
BUD RIEAEREANZE A FE I, S ST 75 A0 A5 S5 5 JHL R TOKS 8 X SRR A PR B

LSMRBENSMRAR

ARSCE XS il Ambisonics T AL EEECA A CAGEE R TRURR R DIl 1R DT R T AT o
WA H KN, fEEFT Ambisonics FIWFAL RGEHIEEAL b, 8 EUREIVRAG SR8, BRI
S R AT 37 5 LSV A PR R, B T A P AR W i o L A B T P 2 A R A
455 EMURFIHI SR, X R G AT FR R AL, FFIT e o S et Sk
BEATVPAL,  FERCRZ TR e R A B RS L, PR AR GoX SE PR A 1 75K . WF AL B A
SKHLEIEY Ambisonics RGN SR,  F AHESNHAE G IS A BT ST VR
R N7 SEBX —H AR, AR SO 2 WA 0T 7T -

(D @V T —EREM N Ambisonics T LE RS, %R LMW T EEEH)
Ambisonics 55 AbPRILFE, WHE 45 =4E5 B A RIS LR s nl A B G, RE
g 0f Z M A A SEIL iR . BB AN, BN RGUHEAT ARSI E SR HE,  DLSEBL ]
FERITTUAL I ARG H AT E A B KB S FY Ambisonics FIWTALER R SE, 2)a
B IR T &, I EBR GRS

(2) BTZARSG, BRI 5 & Sk, BRI F R Hont 7=
W E AR ZRI W, DURETROR 22 5 BRI R BEX 5 12 B E X — T E
55, MEIFHAE T SEI P EE 0 F 5 RN T 5 A R H
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(3) Nt—DREmEBOE R, BEMORIE RIS AL N AT SE B ZE R . X0 2
Py B AR B ) o3 A RE i, 4R T — P02 Ambisonics HREVEL, ZH LA S 4
Ambisonics 5 VBAP £, [EIK 7 = 4EE O 47 75 28 FE A1 1) 2K .

(4) #—BITREMW & L%, ¥ /732 Ambisonics I FE L5 ILA KRG
Ambisonics 5 AIIRAD SIEAEE M VERE 5 7 & IR N ERAYEE EREAT T ELECIVEAY
W€ T ARIEIERBARVERER L, BIAf 7 AR B2 )2 Ambisonics SLIERTSERRFUR .

(5) REEVr st — PR RS, MHZRGERGE KT EAFME, TR
F T SIS A AT TR OSSR R A AR T B U R T R R AL 7 A A5 ) 2 ) S
SO . AL AN ARG L R RO W R RN B, BT O 145 B A R R
HITUAREZE SR EE .

LoMIRBESHE

R CHSe T Ambisonics AT WAL I ARAAL K FLBENVPAl 1) T R 9T, S0 4h
5o REE IR 14 foR, BAEMS, RSOt 8k 5k adE.

RERES BN TR EARE S, AT I E R GX i i
TR S SR . W0 Z 78 8080 R R B AT T B, g T AT
AR, AFXTiX e susipa, REASCMT B, B S k. RE, EF EE
ZHiE B 7S FY Ambisonics 7% [H] P BT S DA RAH SRAS T AL BRTT V. AEIX — BRI M B
ERIFEAE FESL T B L WIE S Ambisonics FIWTAL R Ge, XPREFHEAT T VELN IR,
45t Odeon MiEII T A S =N AN SR FEH. JE8E T HSZER RGN
— R ] BT RN 9L . #t— D, X Ambisonics H R R H IS ——H
BN, EH = AT TR . ERETE, T T B O SR ZE W, TR
FHZE, TR T RO 15 R AN AR . R S S B T I R
BRIME, I AT B 06T B A 15 22 I R 5 S WURR A 4 SR OCIBEE o X v Y R OLE S B
HoHE LSRR R) @, A DY EEEE X o R R AR PR A, IR S5 S —4E Ambisonics 5
VBAP (155 R B UEE, AR =4 o 4 75 380 5 s M S 2R, HF R
BN TR A . dE— P Hh, 7E88 s gF R F 0T & s, %
250 R LZIEAH Ambisonics A AIIRAD kb AT R Xt b, PPAR B0 A i 7
B g AL U E AL 5 A R A O BN E B R E R IT
BRI, RN RN B S S R SO A SR L B, T
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BT i

A WS 58 73 il R OIS ST AN A 90 Tl 5 B RS S PR R R RO 22 TR JE IR R AR S

WX IHREAG T AT EESE R SR, B 7&K FEERH S, FEXE S5
AT TR,
AoE___________ wRRE
i \ | ‘ ‘ “‘
| I | | g
| LAY 5% } | —>  mmEME o S
E ] | | e B
\ [ | | ‘ — ‘
{ g S A 7 } | D N R |
P—— 1 SRTWE g 5] T EWEE T |
o = ! ‘ [ \
BoE ‘ | v v | _L} } |
‘ | | > AL —
L ) LV mEEm < BASN | |
| Rl ! ! !
_________________ |
| o owmE I wmmsens ([|
‘ o L[ meew o A
| f[ﬂ?‘giﬁk I | ﬁ}EAmbisonics | _[‘_ ﬁﬁﬂfnl‘ﬂ%ﬁ I
k= o SRt w !
| N B = | - |
=n |
PR T N v o mEREE |
‘ mbisonics G ‘ ‘ ‘ ! ‘
SELE L BWFE ! |
| I I I
| e I e | P EmsE -
| | HHE m%%?%ﬁ% ‘ ‘
ST = ] I I
| £ |
|
| | : | | ‘ v v ‘
e ] v v — |, |
N |
o we el R |
: : I I
__________________ l_ _ ______________2
BAE___________s TR SR |
| |
I e~ I
ERTEERE L patiim > NS > A
|
|
| X N |
| N . o |
SRS 7 2 1 5 Bl 2 ;
N oo G
| % s s ||
| |
E sy }

K 1-4 1@ EE R

Fig. 1-4 The block diagram of the thesis
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—E 5 Ambisonics AIITL RGN RIES 1%

2.1515

HifT Ambisonics HBUE—MABE A EMEAR, T HE IS EGE RS REL,
P o, BRI KEFESREEAET, KA EmR o RS E S
W5 R RBOHAT BV . 3T =B Ambisonics HESRIA, AT LSLIL A AT = A B
PRI R, 2 —Pa G ACEOR, 807 e &5 2 55 (8 SO E R, M ERE
WA BT AR SO A BEAT A A g, TSI A AR A A AT T A EE . AR
P E £, Ambisonics R4 A BLJ3 A— i Ambisonics L (FOA) 5P Ambisonics
HR (HOA) W38 MRYEEIMA A AYERE, W] LLor /KT —4E Ambisonics (2-D
Ambisonics) 5 =4 Ambisonics (3-D Ambisonics) . IS}, EATTE 3-D Ambisonics
filh L3858 7K P T 20 HE R MR AW Ambisonicst®!, 25 I 3 i THI B A A& R4 1 10 3 4 b
% Ambisonics (Near-field compensation Ambisonics, NFC-Ambisonics) BOU%EEE,

AEEXS Ambisonics MUE. AL LL I IR (S AL BT T &I RIE, BT
P, H/eE T —/N2iEiE Ambisonics FIWT LSS EIL RS, T SLIL R B
B 7R SRR FEASESE N ER. ZRGEE T ESEm. R TR
WEFREEDYR, SEIL T AR AT T4 Ambisonics B EE A S SR AT R

ARE 22 WESEK E Ambisonics FIEEABRIAT NN, WHAE M EEES
Ambisonics FH LA KA E G . 2.3 15T Ambisonics i, /41 T @B Ambisonics FJ
Wr Ak RGBT 5 A A I SE I S HE . BT, 2.4 TN AR RN E#AT T A4S,

2.2 5 M Ambisonics FIE K [RIE
2.2.1 BKIEERE

XTI T AR AL B AR T, AT DA A B AR S S R A A ZE IR SR S
RIZESMHAE, LINE ST GBS, XF T B2 A 75 S 5,
AT DA BRI I AR A5 5 o R 9 A R SOk s U A &, gEm s 3 A 3445 5 1
ST SRR, REEHHA XS R BERE SR FEIAE Y.

TRYE A BB T RE, AR A Al AR R 9 B A R H] SRS I 3% (Exterior field)
AN YR N RS A3 (Interior field) FIH & BN, ZWEZ T FREERBIFR T
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% % mli Ambisonics AW ik RGN JE IS Bt

() A AIE B8 H0 O BROE bR, mT DU RO B B AT o R R T, EERAAAR R R, AkkR
Q(0, ¢, r) FU A AR TR P Al DL 7R B,

P(r06k) =S S Br(k)ju(br)Y(0,0) +

n=0m=—n

ZZA’" Yho(kr)Y™(0,6)

n=0m=—n

(2-1)

R TR A RSN R IR A S, )T RS, R
T AN, IS AR AR, BIAT =05 j,, b, kA5
HIR VRIS RRRUR R BRI YT R BRI, R S TR

| V2 sin(|m|0),m <0
Y(0,6) =N, Pyl (sing) 1,m=0
vV 2
" V2 cos(mb),m >0
< N|m|:\/2"+1(n—|m|)! (2-2)
! 2 (n+|m|)!
. (1—:17 )m/2 dn+m
P ( ) 2nn| dxn+m(x2_1)

m,n—Nme[—n,n],ne[0,00)

H, P NA M Condon-Shortley phase K T (—1)™ i 4F & ¥ ik £ 1 0
(Associated Legendre polynomials). N[™ yERIE & H T —1b R %, iR BRIE o8 Hopl
FRA N3D H— A Bk s %082, B B8 IH— AP -

i 27
/ / YrY A =46,,6,m
0=0J =0

/|Y;L"|2dQ:1 (2-3)

Q—S?

B, b e g, X Hi=jif, =1, HMFLTo=0. 023 Frekike il
G 2-1 Bron, BEGATLDUREL, AR ERE & ACEAT AR FE R, B Aok
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HepE TR A8

B, JRFIERICEE. Besh, TEEEIRQ-2)E X N3D IH— L RELN 8 4/ 2n + 1
T T HUE R B SRR TG, B R B R BT A S R AR, 7E SRR
(SR G015 AL B A, AT A2 S S SR L R AT ARV IR . S2BR
(AT LARS B /20 + LI, 3R I — 14 7 3 R i B B0 PRy SN3D Bk B 152,

Iml _ 1 (n—|m|)! )
Nn SN3D 2 (n-|-|m|)' (2 4)
SR BRSO B A — AR, 75 AR B AR AE I AR El A/ 2n + 1, J9fETRGE, 40

TERFIARUCHT, AR ERE B AU R M N3D H— B .

oYy B
| <f> s vo R
B of |
O OE le 1 Yl[] Y'll
Py
25! o) | @ 9
Q (0| -
O 0
v;? ¥ ¥y ¥ v?
2 o ¢ J
/NN —
v, v vy % v v? v
A ¥ % ¢ & 3
b 6t o S

K] 2-1 0 2 3 R R 250 A8 ok e 2 S

Fig. 2-1 The graphs of spherical harmonics and angular harmonics from order 0 to 3

2.2.2 FEIHRVEKIE R 2 0 i
T B R BB A B, nlxtRQ-DH#A T AR, R BB R BN LT, I
TERRTHEAT AL Sy, AT LAAR 3

Br jn(kT / / (r,0,0,k)Y 7 (0,0)*cos(¢)dOdo (2-5)
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% % mli Ambisonics AW ik RGN JE IS Bt

Ho,  Yoom Yo e, ACCrbeR F SR EOR AR R AL BRiERE0E LD aE
X, Bk Y=Y, EREQ-DNERERIEAL (Spherical harmonics
transfer, SHT) 3, XA ULH], FEFE ] LA —H R B, BRRR.

3 R RO IR 8 LR W K e P THNB S BRI, e B0 A an s (1-6)
KA-5FTR, W ARQR-5)FHEBY, X FFHjk:

N n
P(Q,Q.,k) =eF D =4n> " 3" 7, (kr)Y(Q) Y Q)

n=0m=—n (2-6)
B =47j"Y ()
X F BRI I
P(,0 e 1T
)= Gy =]
=3 Jgalkr) kR (kr) Y (L)Y I(S)
n=0m=—n
B =— jkh{? (kr) Y (9,)

b, jONEEORA, R N T RERIGTRESL, A =hy 9,

R(2-6)11, FfE R LA By 58 &R, JEH B hXE Y Q) 5HE G
K, HUBREBUT, (5% R0%H TGS B ERGE R B0 TR (N=400), {AEIFRHZ
BR T S BRRE AR 2% 1 51 5 A B AT BRI, RS IR Tn € [0, N, Sl $ iy e
LEHEARE, WRIRE.

2.2.3 Ambisonics RA5 5 fZH5

WYL T R SR B AR A 2 AN ST A, S RS F AR IR
Frmat i BRR A 37— 50, SCHLS B . B8 T Q=[0,0,m], HESHA,
BESIEL S LA . A7 SR P i, B R Q-6), &MA P, N

L N n
P, Quk)= Y A> > Am (k)Y (Q)Y Q) (2-8)
=1 n=0m=—n

HElEyS EREY %, WP, =P,, kiEA:
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ZAlY’" = Sig-Y"(Q,),me[—n,n],n€[0,N] (2-9)

Hrb, Sig UERFIRSEFAME S NE, EAEREEARR:

Y3D[A17A2,"’7AL] =Sig-[Y (Q ) Y, (Qs)7 ”aYJJVV(Qs)]T
Yo(Q) Y§(Q,) - Y§(Q,)

Yo — Vi) Yi'(Q,) - YiI'(Q) (2-10)
YH@) V) - YE)
e balrp, TRORMEFEGE, B0y — AN RG], nd i R R 1 5 S A E

BN FERIRAE S [A, Ay, AL

decode

A Y5(Q,)
A Y '(Q
.2 = D;p Sig - 1 ( 8)
: : (2-11)
qu )/gy(gls)
encode
D3D:Y3D71

Xt T F 75 L, BB DL T 30 B IR = A5 5 Sig, Ambisonics ZRiL(E 5
Y™ RSig- Y (Q,), #%i@iE Ambisonics 4ifil(s 5 5 H R R B R N:

B,
4j"

Ym=Sig- Y= (2-12)

B4 75 A I ) LSS 5 SE PR _ESE & Ambisonics FififE 5 LB INAH &,
BN AL A A R FE Dap £, X I FEFN Ambisonics 155 IS, Dap
PRONAFRGFERE . SERRRAEIERE S, Yap A —EAAERSE IS Yap ' MRS JL A P 4
B, AFAELLTE = Mg A

(1) H(N+1) <L, Ysp WRGERME, BATLTH LM, EHEARAE R
REE LA MINEHATIEORAR, B Yap "= pinv (Ysp) = Ysp " {Ysp Yan' } ' 7R
CEUCRINBAS IS e
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% % mli Ambisonics AW ik RGN JE IS Bt

(2) H(N+1)=L, HRFZFEFEHX5A, Yap FHHE, HREFEIRAREIA
or A, GEH SRR TTE, AR ERRE:

(3) H(N+1)>>L, B Ysp AEERRE, N SRS

IR ARG I FE A OV AS UERC AR RS /7% (mode-match decode, MMD) , SEFRH i
Hh, A s AT BLAE AR BN S], R SR 2 G AR A B AL ), S B
| 3E8 T E B TBCRY SE 7 ) AR G 2R K, RIRGEARE, SRS A, H#
I SERR A RGRY A IERE. N T IR AR d5 A BN IR E I, R DU
FHFERE 5648 (condition number) s PFfili FE B AR e P00, 6 i 2% A1 B0 1 o)
B N AR ZE BUBRE L ) — N8R, X TAEEFERE D, H AR (D) 15E SON:

0 (D) mas

R(D)=|[DI| - |ID"']| = 5=

(2-13)
Horr, o PR Er SAE, T LIS 0 R B AT A B W SR )

AR B AR IR 55 a3 K P, SAEE Y A GRIGRD BOER,
FEUEASBEAL AP T P YR . AR H A5 P U 5 EE R 75 A e S B R B R, AT RAY
A ROREYR S ~PTR MRI RR, EA UM RER A SRR, B E RERIAH(2-9)
A URHE X (2-6) 5 Q- #ATH G, S8R WE 2-3 Prox. BT R H Ar il t i
AR PH RN R, 2R PR g B H AR AR BRI, 477 d K F P R B S L

# 2-1 Ambisonics 7537 E AL &

Tab. 2-1 The combinations of Ambisonics sound field reconstruction models

Hirmi a6 = A

PR P ZAZ = Sig- Y (9.)

M2 y N _47T]n m
q:ﬁ/& E:RE/BZ Z Al Szg Wyn (Qs)
N \ " b (kr,) "

MUR R AR 14T Ambisonics BAYRS, T LLE 2 2548 a5 580 (6 A
) HxR, X Ambisonics #iFF NITIH#ME Ambisonics (NFC-Ambisonics) - NFC-
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Ambisonics CELFE HARIEN-F A SRR AN B TN T — 1508 SRR
[ RBAN, WA SR GRS - RS A AR B, Z R BT DL PER AR FEH (k) SHAT H ik,
KQ-1)AT LS A

(2-14)
Ay (k) Yy(e)

H(k) = diag{ho (k), 1 (k),hi (K), -+, by (k) }

Hr, diag ForxtAREFE, T HAEIEONT IR, 0 SRR NG, 20

h (kr,)
hP (kr,)’

s AR 2 o BT 9B FRD R T 98 0 E AN R] B 8 5 R I ) 2 S b AT A M50,

R RE I R B = 4R ) B S AR AR S A, A AR S A R K
i, ATRAMEH 4k B A=Yy, MR R . RO, FRE R 5 8 A R
W, Q- 4RI A

b, () = —T S B R L, (k) =

’ ‘9““40“

o0

P(r,0,k)=> " > B,(k)J.(kr)® (0, (2-15)

n=0m=—1,1

Horr, J, N B R AR AL s By M BEE IR R B Dy, e L R s,
eR H R WL 2-1:
V2sin(nd),n#0,m=—1

1,n=0 (2-16)
V/2cos(nf),n#0,m=1

1

V2m

@, (0) =

P R LRI R R IE ST — A e . SRR SRR, A U oK B A B SR
m, HAEREE R, FHaQ-2), WTCURILA R E S RO R SR, 2
BB S50 0 AR T I, X T N B4t Ambisonics EJI, fIE B E
NN+ 1A, RIRDRRE N + | Mg Ea T E . B, 4 S 3R 4 75 A 4
Bz /N = YR T R

26



% % mli Ambisonics AW ik RGN JE IS Bt

2 5X2-9). RE-10)5Q- 1) HR Y. ElFEGILERH#ES TR, —
#4E Ambisonics 2RISR FE ] PLRLEE A

decode

Al é(?(gs)
A o
:2 =Dp Sig-| .(95)
A, Py (0,)
encode (2-17)

Y(0,) DO(0) - BO(0.) ]
D] 4100 @16 - o010

4511\/.(91) dj}V&ez) Qi}v('@L)

2.2.4 Ambisonics fERZL1L
=TT Ambisonics FIBASILACYE, %7 IEEEG FREUEKE I AW EE 17,
{E R FSBR i FH ) Ambisonics {55 B PR, S H 550 8 % HEAff 2818000 405 R 2% )
WEAR. EHAERYSISAMMEOT, =45 U0 E RS i =R . E=K
R IELY /N W (1 P N
N =[kr] (2-18)

SUh, R LI . BTEOORIN S S R, MR, R 2
T EAY, KB, SBRA Ambisonics AT 7 B AR S b0 B S S B )
U7 5 25 R ARTSHE AT AR AL B, Gerzon 36T Makita 36 € 7 [ M LU R 1000152
TR R 2R 7, 5 R RS RS T AT R B2 0N, BB L M
169 8 SR 10 T I8, R B 5 BTy 1 B B 2 7 2 SR

—

Ty = —x (2-19)

Fp= =2 (2-20)
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Hrp, A, 7y LoRluss | MaE i, MERENET S &ML — B0,
Ty S TARMUE N LR ITD FHERIEE (SESCHIRMLE) , 7p B 1 s e i 20 R
ILD MR, UL HAs A |7y || =15]7p]| =1. BT AR IRS, X Hix
X3 3k AT 7 A S ULAC, Ambisonics REEHT| |7y || I HGE 1, H|[7p|| £ 75 6%
I AL OLT, BAIEUK. Daniel 58 AN$g R B RAL||7p|| B max-ry AL TT
2, MEBCE infR e, 755 H Y Ambisonics S T, FHARAM T 0 Fs

decode

A Yo(€)

4 poasi| V)

Ap Yy (Q,) 2-21)
encode

A =diag{a,}

137.9°
an—Pn<cos<—N+l'51>)

diag R X fFERE, B CHIRCR NS & kil s BOB ok E—A> “E s, ATH
ok 55 o

0 0
30° 0.4 330° 30° 03 330° 30°
60° 300° 60° 300° 60° 300°
90° 25 270°  90° % 270°  90° 270°
120° 240° 120° 240° 120° 240°
150° 210° 150° 210° 150° 210°
180° 180° 180°
(a) Tiltb (b) MAX-TEif 4k (c) in-phasefltit

Kl 2-2 ANFEMALT 3 B Ambisonics £E /KT _E B R FL 48 7] 14

Fig. 2-2 The virtual directivity on the horizontal plane of 3™-order Ambisonics using different
decoding optimizations

i Fimax-rg EALJE, BER A& BTG EYE (RVEBANEDS A S RN, 8
e (R 2 B 7 TR AR AR S el R B s 7 LI 220, 2RI, R AN 58 P [
N, X ERE EA I AR R RS T . ML, B in-phase AT i,
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SRS, 3 A AN R AR i o A AR AR T iR BB AR, S R AU A 1R AT 1
a5, R REOHE 5N

NI(N+1)!
(N+n+1)I(N—n)!

a, = (2-22)

2.2.5 8 &R Ambisonics

TRAHT Ambisonics ] 7% [] Ambisonics )3 pR HHAT IR FEIEY JE, 42 E/K-F IR ER
WK R M. HAT, JRAWT Ambisonics A1 2 MR pR AT R SRIEDH . BRI R B A%
s ((2-2), FTCAg o =R M. R R 2-3 fro, 46 Zonal 7
{Y"n=0,m=0} . Sectoral ¥ J {Y"In=0m==+n} L K Tesseral ¥ I
{Y7 n=0,0<|m|<n}. BHFREm =012 BRERE, HRIFRER I & AR
Mo MRHEXQ2-2), YV 500 ¢ A RECYE W ik E 2 B P (sing) , X T
Sectoral #3%, ZIN P! (sing), 1] LUEIF ANO,

Pp(sing)=(—1)"(2n—1)!!cos"¢ (2-23)

Yb()

v v

}/20 Y*Ql Y'22

Yy vy v v
6 & »
Zonal Tesseral Sectoral

Kl 2-30 & 3 i) Zonal. Tesseral X2 Sectoral BKi B %

Fig. 2-3 Zonal, Tesseral and Sectoral spherical harmonic functions from order O to 3
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Py SR R L cos" ¢, BEFE AL o] BaIN, Py BECE /IR [
i, XM ERUEPRELY ) BB PR, IXULH] Sectoral 1)K RE S 32 BAEHHTE/KFIH . 7T LATE
TRE — €% 3-D Ambisonics H)4xEF1E R AR b, DR B S =B £ Sectoral 13,
TR ER WA AE K T S B A A AP AR BOR RE =, BRI, B 247K ¥ AA )97 75
SRR, BANEIN A A 2L B AR O RRE 1

# )54 3-D Ambisonics M #UAN M, , §7RE Sectoral KM E1E M,y (Myp > Msp)

ST Q, AL AR, H Ambisonics g (g 5 N0,

Y =Sig-[Y(Q,),YT(R,), -, Y& (Q,), (224
YJI;;DM(QS)’YJ{LDH(QS)? o ’YI;K[IZD(QS)’Y]}/IZD(QS)]T

K, =(2-11)HH 3-D Ambisonics fEASHREDp 7T LAXUE NIR 5 H Ambisonics [1f#
TR Dpigs 40 R FT7R

Yo(Q)  Y9(Q) - Y§()
YiQ) YR o Yi'(Q)

Ymix: YﬁsD(Ql) Yﬁw(QZ) oo Yﬁm(QL)
Yid, () Yil, (2) - Vi, () (2-25)

_YJIWM(QI) Yzlww(Qz) YJIMZU(QL)_
Dmix:Ymi);l

MEBIHFERANE L WL = (Msp+1)+2(Mop — Msp) B, fERGAFE AT LR
FRER I 77 TG 8] XF G 2 Maop B 3-D Ambisonics £4t8, EA M Ambisonics &
Gixt 9 R BREE R TR T Map® — Msp? A, I HX P E VLR R RE0EL 7EK
ST A B S A AR PR AR B, B KT TR AL VR K S R oy R . R TERIA, 3-D
Ambisonics %18 N P, Sectoral 3 ic A H, 1% 5 M7 AT LLid N Mop H M, P W R
4 Ambisonics®,

Rk, BT X ERIE BRAGIAT Sectoral VR IYE, AHIE T EX AMIGH 3-D
Ambisonics 5 517 2-D Ambisonics B, RUE T FELEP), Ui, SRS,
LR Sectoral W4y, RFHAT — @R EILRS, %K 223 AW 2-D
Ambisonics RS BT H . XF L Z4EM IS R B O M =LERRIE R ELY ", B HTE
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BEY,"(0,6)=N, P, (sing)®,'(0), Lid—EMBEARITETLG, B MERIER
BRECA LR Heoe 10 (HES R MR 1) -
o;7(0) =Y:"(0,0°) - a

Voo 1 42.2m20 (2-26)
Y2(0°,0°)  NiP(0)  4/(2n+1)!

o=

i EE 4 2 ¥ a XF 3-D Ambisonics 17 5 (1] Sectoral 3 4y HEAT B ME AR B UL S AME S
BPA] %4k 2-D Ambisonics 15 5347 — 4 H il .

TR &Y Ambisonics B A A A A BREVRFE, FEKFIRIJTALAA 0 HA S & 7 9
e, LAARSCHRIY 192 M ARG, B AR IR, XPEE 2 B 3-D
Ambisonics 15 4H2P {4 Fr Ambisonics /£ MMD fi#fs , 1ERT 7 Q(0°, 0°) #7575 8 1145 17
Y, W 2-4 BoR. ATLLER, HFEEIEAIMA0 FREEANER, fEKSFE A
EEAESBEE PR, T FH TR A LR PR

Azimuth=0, Elevation=0

0.04  0.04
(a) 2 3-D Ambisonics, il & (b) 4H2P JE A B Ambisonics, 4l &
0.04 oo l U T°p .....
0.03 - 0.06
0.02 0.04 4
0.01 4 0.02
0 Left 0 t—— Left
-0.01 1 -0.02 -
<002 -0.04
-0.03 006
-0.04
; ; ; ; ; -0.08 ; . ;
004 002 0 002 004 -0.05 0 0.05
(c) 2/ 3-D Ambisonics, FHHE (d) 4H2P JE A B Ambisonics, FALK]

K| 2-4 2 [y 3-D 5 4H2P JE & Ambisonics NI 1ERT /57 8548 7] 1k

Fig. 2-4 Directivity patterns of the front loudspeaker under 2™-order 3-D Ambisonics and 4H2P
mixed-order Ambisonics
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X2 AR A E I A s B S, e 2w A X b R 854 5 A S
RSB Ambisonics HIfRISEERE B A BARAILAE, TR ZE RS ERFRENE. DIA
XA Z s E AR BRI N, ZBESIEKETH A 36 NMaFE AR, —4E Ambisonics [P

W By 175, R 2-2 % 7R85 0 2 6 Br Map i, ANF M,p TRk

%

PEEOE XI(2-13). FTEVER], BB AT AT KBRS A a, EBER M
N B Mop SRS RE RS 1 2 RO L BT Y

% 22 RFIMECF R4 Ambisonics MR FE i) 2 15

Tab. 2-2 The condition numbers of decode matrix of mixed-order Ambisonics

M o

under different order

K M;p,

M;p 1 2 3 4 5 6
1 1.7
2 1.7 3.1
3 1.7 3.1 6.3
4 1.7 3.1 6.3 16.0
5 1.1 3.1 6.3 16.0 46.0
6 1.7 3.1 6.3 16.0 46.0 163.7
7 1.7 3.1 6.3 16.0 46.0 163.7
8 1.7 3.1 6.3 16.0 46.0 163.7
9 1.7 3.1 6.3 16.0 46.0 163.7
10 1.7 3.1 6.3 16.0 46.0 163.7
11 1.7 3.1 6.3 16.0 46.0 163.7
12 1.9 3.2 6.6 16.7 47.9 169.8
13 1.9 32 6.6 16.7 47.9 169.8
14 1.9 3.3 6.7 16.8 48.0 170.2
15 1.9 3.3 6.7 16.8 48.0 170.4
16 1.9 3.4 7.0 17.6 50.4 179.0
17 2.0 3.4 7.0 17.6 50.5 179.1
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2.2.6 Ambisonics (5 51815

7 2.2.2 Ti iR ) Ambisonics B SR, YR [ A, A DUREREE 7 1)
FRECT TS 5959 Ambisonics 155, K5 ML 7 75 25 41 (142 18] 0 A7 FEAT A6,
HET A OB L B JR I A 3 . TESEBRE R, AR R BN CA R ST, i
I IR IR 7 AR . WIRTATIA, A AEE B By sE A YE, R LU £4 5 38
B3] B #e 0] P R B HEAT SR, B E S ARG M EAA R A E R B, AL
Ambisonics {55 . HEJ, B LU (8] 4 4% 5 3B G AL /5 3 MRS HE 5 #7440,

—E M55 A #5132 Ambisonics AL 1E T .

7 [A) A A PR AR TE () B R — LB, A BB SRR R LR 2-1
M2 AER S, EHAH Ambisonics Rl fE 5. B mli i m 14 i 14 75 25 78 55 b b i
PASEEL, HAT, 2 E AL a0 LAl FOA 55 M. 250U/ ME 7 380 B4R
ZEws BJrm (FLU, JFm&REN[L 1, 1D « )G R (BLD, [-1, 1, 1D « AR~
Ji (FRD, [1,-1,-1D BLEAJE EJ7A (BRU, [-1,-1, 1D PUANJFI], A RS 250 R
OJEMIN, Response =1/2+1/2cos (Aa) (Ao AL 7538 £ 5l 5 76 I 5 7] 1 2 18] 96 A1)
061, BB IRAL T Q,» W Ambisonics {5 5 Fl B 415 51T HA

w 1/Ve 1/ve 1/ve 1/V/6|[ FLU

X|_ 3| 1 1 -1 -1 ||FRD 227
Y| 2 1 -1 1 -1 || BLD (2-27)
A 1 -1 -1 1 BRU

Hrp, [W,X,Y,Z]" #Fk Ny B-format il R5 5, 1255 5 N3D #2U1 FOA /55 K R N:

W, X,Y, 717 = % (Ye/y/2m YY1,V P ! (2-28)

ATHRHREENNES, HEMAESREREER, BB 3T LU
7 2% [ E B 3-D Ambisonics {5 579, BRIGAL AR KRS 10 45 2 R LR, S
Ambisonics 155 Y T HERFESI AR5 S HEAT LR IE AL & Bk /93], WFLIE 2-5 F7
Ne HEMAHFES ERAEENE ST, AR E X EE AT IR A S,
13N 37 00 i R B 3k — A8 5 I X L (1 ST R 5 M i g 28 0 M 5 AT B
AbPE, 43%] Ambisonics ZifiS{E 5
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BEFRH SHT B RPAMEIRB AR Ambisonicsf& 5
Y9 (@) - wy
552 >» YV
553 > A
N )’711
> V7
8T BY » Ry > Yy

K] 2-5 BRIAL 75 SRR SRR 15 5 AL BRI AR

Fig. 2-5 Diagram of signal processing of spherical microphone array

KT, BERTGAE PSRRI o (R B FREAIRTD | X TRTQ,
TR, MR QG ELAL USRI P O A 75 5 R R A e,
T R R 1 2

P(Q,Q,,k)=

f: 2") [7(ka) —}%E—%hgn(kaﬂ(zﬁl)fﬂm_7) (2-29)

n=0m=—n

Horb, 7, 7, b il RN R B B R R, B e ERAHER(2-5)
5 3(2-6) AN 7 AT BRI R AL i, 7321

PO.OK= D 3 lilhr) — i (b)) BV (@

n=0m=—n

(2-30)
BI'=4mj"Y(Q,)

S PR o i P ) AR B SRR3R, B BRI T PR, I AR AR
SHIFEQARH, F By #AT KA, RAEXQ-5)x A 5 P #EAT SHT 2, 1
Wronskian 5 21004 4, (ka) —[4.(ka)/h,(ka)]h,(ka) ¥4k )y — 5/[(ka ) h.(ka)] , 153
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. 1
" ju(ka) —[ga(ka)/h,(ka)]h,(ka)
x / i / " Pk Y (0.6 )cos($)d0dd (2-31)
0o Jomp2

2r pa/2
— (k) b (ka) / / POV (8.0 )eos(6)d010

AQ-31) B BRI 75 R ALAL AT, SRR b, A7 BTERES) R B, A
W TAERAE, BRS¢ LT Q, te[l,T], %4k 84040 0 £
P(Q,k) » Q32N E LA

T
B =(ka)?jh?"(ka) Ztht(Qt,k)Y;”(Qt) (2-32)
t=1

Horbr, w, B KFE RUBUE R, X T A2 A 8% 35 50 20 A B0 R S o A i 0

w,=4m/T1,  E R A R R

0 Yo(u) Y§(Q.) - YO(Qr) [ Pi(Qu,k)
Y:II :%diag{Rn} Ylggl) Ylgﬂz) Yl(:QT) Pz(Q:sz) (2-33)
~.1{rv YN(Q) YNV(Q) -~ Y¥(Qr)]LPr(Qr,k)

v, R, NERIEAL 75 25 B 5 7S I i ek BOAh 208 e o, S ERFESII SRR (Sn Mt
BREgAS OB« RBRAEIERA CPIREERER) Ax, R, 28U N EIR:
R 2-3 BRIEZIHG 0 75 37 e 5 pR R MR DR S R 2K

Tab. 2-3 Coefficients of sound-field radiation compensation filters for spherical

microphone array

BRI PRI R,
N . ka)’h{?'(k
SZLER BRI ( azﬂj(wg) 2)
o) > kazhéz)%ka)
HH R R
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1

I ER ¥ H W

2L ER BRI

J
kjn(ka)h$? (kr,)

2.35 M Ambisonics AJATL R 1% 1T

FT 22 TR S Ambisonics JREE, ASCESEHEN T — T ARG
= Ambisonics BN RS, Z RS G L E TG, TN 00 R G0 R AE
BTt AR SRR SE AT A

2.3.1 RGHELR

=i Ambisonics T T AL HBCR G BT HAE SR 40 ] 2-6 FraR, A SCIRF 9T 32 BT
=it Ambisonics R G E UM, EIFAL IR T SO T B E ARG R4, E
TG FEGEAL BAE T AP E R =305, Wi Ambisonics {55403,
B T R i s, S TOREME . DR A S AT AL

REAEAE 54 ELLEPT Ambisonics BHCNAZ L, I8 I B RE A0S IR 5 10 %7
| EMTES, %8R 2.2.3 TR kAT Ambisonics 4if%. 75 F] Ambisonics 4ifid {5 5
JG, AILAXT Ambisonics {5 5 @47 B4k, (U HE4E 1L (3-D Ambisonics 5 2-D
Ambisonics A8t ) K IS R AN . SRJ5, Ambisonics {5 5l i D S5 i 2A 220l
BT A B B S SRR S AT 2l B R, SELE I RN, S A S R EAE
MATLAB 2024a V- &5 b 2wF2 8.

PRI o E BB Odeon 12 JUAT 75 244 FLAR M 5E . Odeon & B 2%
PiE v AER, ZBRA 4SS T RIS S R ZE R, 2Rl H T E R R R
BRI, RGRYE Odeon BTk B (1 B SR 5 J5 OIS B, X SO A A5 B AT — 5@
KbFLJE, {f] Ambisonics {5 5 AbFRALHHEAT 7% R # i

B 6 S B S R R P RR 515 S SRR &, T2 E 5 5L,
LT R GUEAT 2 i L, BT R, PR AR R G S B R AR Y
PRI 22, BT 2 v ISP A

el

H
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5 % 2l Ambisonics ATk FGE i HL 5 i)
e e
Odeontt S L1 <« E B R 7
g a e
35( N i<::|'ﬁ/—\:
JE RS ! = sz | |
R }[ e E | AR

memm

Ambisonicsfi#hg AmbisonicsZmfig (——i————i — 1 EUFEES
§ ) U ) i -
s ¢ N O ¢ N
Ambisonics
5 AR
y,
Y 25 }

K 2-6 HiB Ambisonics A AL R G HELE

Fig. 2-6 The Framework of higher-order Ambisonics auralization system

232 H ARG RIAR
2.3.2.1 L

Y SRR H AL 192 IBIE A 5 4%, $78 S 2 I R AN a5 M I 28 |, e
[ /3 ATUNZE 2-4 7R . 2 LA 1504 TaRG, BI85 AnfE-30°2 90°4L 9 AN 1 .
DRI E T — A A RN CE RSN 3.5dBA) , HEFE 7 13 mm JFH)
bR UL R AR T S SR (T30, TR B 71 S B2 b, 2 1 W3 i DA RRRAER S B2 1 S S T4

ARHFE AT BAT T AG R E A S DL R A%

(1> RME HDSPe MADI FX PCI-E £ 1 &3

(2) TACSystem VMC-102 Wl # 128 2 4,
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(3) Focusrite RedNet D64R MADI-Dante £t 11 3 &5
(4)  Focusrite Red 16Line Z /B FE 4% 12 &5

(5)  Genelec 8010A EAN MW &4 192 &

(6) Cisco SG-300 28 HT-JR2c bl 2 &

(7) Focusrite RedNet AM2 H-AL W HLIG .

Dante 5 A% B P 4%
MADI 1 MADI 1
> > Dante 1
MADI2
> Focusrite Dante 2
RedNet D64R
1
MADI 64 MADI 64
> TACSystem > Dante 64
VMC-102 Tt
MADI65 | 1 MADI65 |
RME | mapries MADI 66 Dante 65
HDSPe > ”|  Focusrite Danteled
B MADI . . RedNet D64R Cisco SG-300 1
FX ’ ’ 2
i [Maprizs o MADI 128 bante 128
MADI 129 MADI 129
> > Dante 129
MADI 130 MADI 130
”| TACSystem ”| Focusrite Dante 130
VMC-102 . RedNet D64R
2 ’ 3
MADI 192 MADI 192
> > Dante 192
\
#n
v
Cisco
SG-300
2
A 4 \ 4 vy °“°°° Yy v """ v \ 4 SR 4
Focusrite Focusrite Focusrite Focusrite
RedNet AM2 Red 16Line 1 Red 16Line 2 Red 16Line 12
AL A AL A AL A
00 Generic 8010A x 192

K 2-7 BEF R GRS

Fig. 2-7 The framework of the hardware system

R A I 2-7 B BUE S AR N _E BT RS R A
)5, RME 75 R¥ 2l {55 L MADI #% &2 VMC-102. VMC-102 34714 25 1%
Hl 5 ¥, AEBESEME D4R, ¥4 Dante AN S, D4R 5 12 &

38



% % mli Ambisonics AW ik RGN JE IS Bt

16Line ZH % | —™ Dante &4 tH 2%, 2@ %7515 5 B HH % 16Line. 16Line #f—4%
BB S HRANEIME S, 2B a5 a5
K 2-4 192 iHIE 7 75 A5 B 51 %47 75 o 5 ) J5 oL
Tab. 2-4 The spatial direction of each loudspeaker in the 192-channel loudspeaker array

s o Jifif0 g
-30° 0°%% 342°LL 18°%% (1] [ /3 A 20
-15° 0°% 345°LL 155 [AI[% 5 A 24
0° 0°% 350°LL 10°%5[A]% 5 A 36
15° 0°%% 348.75°LA 11.25°% [a] b /AT 32
30° 0°7% 348°LL 12°% ] [ /3 A 30
45° 0°% 345°LL 15°%5[A]% 5 A 24
60° 0°4 337.5°L) 22.5°%% 8] 43 A 16
750 0°% 320°LL 40°%5[A][% 5 A7 9

90° 0° 1

2.3.2.2 BkoHE Bz £

HTRAQERZHERGFE G, FOHSEZENAAE g ERE, H
i ds LA S — B ER . REIREXIFE A SERBUL (BB h) 171
BN KR ZE S, MBS A I EAEIS R, A T E B IE IR, T BN AT
ket L, AR T RO A5 R, WO ST IR B AR AR ZE AT AN, ORAIE S
R R RE—

A 3C A (R ik e SR 35 SR RN BOE sZ R R G S (FSE S WS,
55 5 KKEF4 (Maximum Length Sequence, MLS) 15 5l &% 2 H A &/
V2 R R e 2 B VA0, AR B MLS &, F345E 5 0 v ] AsdE e XA T (9 ik
P AT N T AL EE, BRI SRS AR, R AT DUIRAS S I E S M R, 0
FAUE 5 1) 5E SOOI,

z(t)=sin [ZWTfOtI (e — 1)}

a=1n(f1/f0)

(2-34)
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v, fi, fo, i BIONAE S HIBR ERR . AN IR DA S RREEI 7]

ST 5 0 Rk o 0 B SR ER AN 2-8 e X TAR R AR ER AR (Linear
time invariant, LTD) R4, EHERIRET, RGEAEHKTULH—NKeFmw B a7 #68,
RKRGHHRBE S yONMAES x@) 5K ER . AR, LTI RG0S H
R A S, 77 A FIT R B R AR B 1A AR e RO, RS AR A AR R S AN
(5T 1A IR (E 2-8 I B ITHERR ) -

h(t)

il

— > HiuE
BORCE JRHf 7
— W

P 2-8 ik o7 ) = R 2 A

Fig. 2-8 The diagram of impulse response measurement

M EFK AR, FESES x@BiniaeEda, B E{NERRREES y(0).
I 3845 5 B AR S RO IS SR, R TT DR ER i R

y(H)=h()*a()
{ Y(H=H() X(§) 259

=N

Hrb, Y, H, X3y, b, o SR SUERAE S, 8 R AT 55 2], WNES

B () R G s op S (8)
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ﬁ(t)::IFYWF{E:SZZ} (2-36)

X(f)

IFFT APE A B A e, FIR R RROAMAE . T g2 bRl & o 7% o A7 78 1
B, B RE—MARE/ME LT MER, Fibh(t) FE 2 525k 5
h(t) B ARM Tt

ERERET, X ()RR E R, | TR OB A 1 SEBr s R PR RE PR ], BTS2
bR LTI RGA SRR, PlRe o HILBUE BERE (Bik 00 HIfEI, ST H
AR HE (K B (8) ARAE, BRI “IRE” o STk R g i e A5 p 3l R 1 1E AL
TIARFE KA R E

2o H*(f)
h(t)—-IFYWF{Jyz(f)4_€(f)} (2-37)

R, HH=Y()/X(), e(f)RIENRE, (AR FE N EEEL 0 EUE,
TEAR RO 36 1) 4/ U o K 31
2.3.2.3 tREgR iR E) M AME

ARSCH, B A kR S R A 12 S E I AL A A% (Briel & Kjer
Type 4189) o AL P B IE T 752 IS, 575 3R B 20 5 3 (1 s 30 0 7= A1
oo FEIRAR A% 7 2 E VAN F 5 OB, X RTINS AR . [ gtk
FEEBRTE T AER X P R E X R CRIVE 5D NSRS AT TR B, M2 T
L SR AR G TP 24 78 JR IR X A% 75 s RN SR, A 75 25 (R AR R i P
(EFEARSC I AR S, 75 8 CE T AN F D7 6, 1 I &A% 75 4% 2 5l R g IE X —
ANTTIA], NG 7 3 AR B 1 428 i LR P o N it 4 BRI RS I, O TR A R A
R348 ) PEEAT DU 5 1 TR R AT M

e 2R MR R SE A ] 2-9 Fom, WIS SEEGEAVE S TR, ASRME AR T
12.1 dBA. S5 HH F—> Generic 8010A 4775 23 AE AR Y, R HEA% 75 25 11 2 Sl A
JEd (¢=0°Wffhs a5 IEXF IR , B JCURBE A 5 5 0 IR R A 75 e R S
AN RIS O RO B DR — B D2 7 JEAE X A 7 8 R B TE AN () AR N ST
IR GERKIF IR . A% A5 B PE B A YR 350 cm, T EIIN 140 em. SERR N B0
5T BEAT Ik )
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Fig. 2-9 The diagram of microphone directivity measurement
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B T 2 A A P R EURRN AL, B RO SR AR R 2k e 2 A I B
BT A5 5 BA R R RITCR N, 8 BT SR 5 22 %o B8 o 2 PR I D 4 2 1
S ANTERE . IUEHCHE TS, Au %8 N — Y Ambisonics RGN & A R EERET
FoAa I E R, IR T AR PR R R MR B TR IR A, 4 SRR BT AAE AL
B P A2 (A R R, MM SRS A B, 5 RN SR AR HAS 5 B8 1Y
0L N5 U8, Ahrens %8 AXTEL T WF ARTEVR A B Ambisonics R4 (5 fr =4EHE ik, 7
MK O 1%, OB E R S N BRI T HESES, SRRN, &
FOEREE R I ) S 1E USRI (Speech reception threshold, SRT) 15 sziRE3ats |
(IR 45 A — B 228, BEAF, Oreinos 25 \f# VR & B Ambisonics 24t (4 B =
A, 7 MKFIHIERBD FEAERAEIE, USRS SRT BT, 284U
Hh, G5 FERERBUE RIS TS SRT 55 SIS RIS SRT A — & i 2= JE10,

RS BRI R Ambisonics 548 B B8 15 25 A B HE T AN Y
Wi, B TIE S U R, S BT B 5 B RS AR X /N . Dagan 25 A
WF TR BE DL B IR 3 R 1 25 (A1 HEiioRE i (Spatial masking release, SRM) JLFAN3Z2 5]
sz m i, HA B R, 2@ A R R IR, B E ST
FERCIRIER RN, BRSBTS . X T Ambisonics 248, 175 % 105 R 5 N $L
SNHE S AR AR AR R (R, AR RGCR A I 22 647 75 28 1] BE 2 06 18 3 A0S 77
AR TR, SR BT fE AT DRI — B % 7, AR R, R K
T EFWE 5 1 = G A A AE R R B, AR U R X — i) R e SRS AT A 9T
3321 S BWEITEM A

VRS S IEME SR AR £ B 2R, BE RIS S LN R
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Herg B RS 22 A3

FMARFR B T s R AW S U . REEERCSE ) BURME 5 I EAL I R
COME 5] RIS SERrE 4E B EAT @A, RS 5 R B IFE R 505 B i R
R, A AMEUE, RBUREE RGBSR NI OO B &5 5 B E NS . B IR
Rt A, BFERARSERAANIER, BRARERTESSEES
(FHFrEE) AT, FFRARNEHF S HE S H RS ba .
B £ 48 20 (Articulation index, AI) . & i& A {# £ 4540 (Speech intelligibility index,
SID) , & & &M% (Speech transmission index, STI) . %E 7 M v] & Z (Short-
Time objective intelligibility, STOI) %, ZMIGIrsE RANXTEH 2], HFHNEFTFH
{55 IFREAT THRERIRT, B H AT % A8 br 38 X35 20 W s i R AT R840, AT 4R
bR RE XS 6 BE (R T 5 R EEAT S AE, R RIT B AT R VA U B 15 S B IR T A
FAAE b T BT LW & SEI A R RS, RO S . EARbR B T
R SE T I U ARHE B S S R ARS8 SN R RS S B . 1 S
55 ) 32 2 3 AR A
o TRV, ZiM N EHMIEEM AT, Z2iE AT g, 80
ZAA) TP BRI IE R 2 . %A bR B I WU S PR EE N (0 1R IR A
MR RE AR 73 BT AR B, (25 5 H I R AR AR S B A

® SIEEIZM (SRT) , %fEbs N—ME&-HE A /5L (Signal-to-noise ratio,
SNR) , 7EiZ% SNR T, S XE S HIRAEA 50%. I8 KA 3 &R
B2 B 7 R B A VAR . I R R AR 32 AN RIS 1 R
IO, BhAS MR RS LT N — MK, LA B 50% 1 3856 B (115 16
bb o ] 5 A A U a2 A5 M L A% 1R DN 2 S R 2, SRR E it kA
A7 T 50% 1R 5 26 T 0 RS I LE .

® LI EIERAE (Quiet speech reception threshold, QuietSRT) , iZighs
N—ANFEERY, EEARLAIEERES T, ZRE RN IER kk 24 50%.
MA 7% SRT KL, (HIEZFIEE T AT, MR XHE 5 s B AT %

AT T 5 TE A 1] % b R TS 25 o L 7 3 TSR 20T T IR AN R, SRR AE A
[ 5 2% 1R B I R OE S5 T AR, A A X HE S S R A B
BT H A RS, TSI R g R oRs, A F BRI EOR N 2R S
W AR, i G IR AR BN, AW A P B A I e 75 R 1 B
SRT {EAE AN MM B, X A FF#0S HBGRZ N & 1E 2 BE R X .
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3AEMM X 515 HESZ WA EXN LI
3.4.1 X EmM

ASEU S 7ERTT Ambisonics 2 318 TN FIEEAMEM, FEEE, BAECKAE
B BOITH Ambisonics B, T g4 AR E GE 5 5 M5, 1258 52
(. ATFAREMBEBAL, 2475 6% P 25 10 52 2 DL B B9 BT 500 2 [0 FE ORE T
S50t VA S AR R . PRI IR A R B UL, R T ASFEIR X Ambisonics
B SR ER I (B%) &M TS IE82WIE. KT E a4
TIRIT, Wi 5iEEE S AT E AN AL E, LIfTE Ambisonics HEHUA B X}
RN . SEIE IEW T /152, AN R O 35 (5L

342 LIXTHR

ALIGHASE 12 LIEFW 2R, Hhag o %att, 3 £ 8. 2REFMF
WVEEEY 21 & 29 %, T 245 %, B 2RETH A& LMKEERR L. KBIT
BT, 8 E S TT R0 1 Sh ol T R AT T B, U A SRk AR AT T
BeHEND), Fi iR 7R 500 F 4000 Hz F4IFL T3S S0 BN 20 dB HL. 2%
PITEAR AN SEEY H 1S KBSt A A IR R b, 2B S At IR B S H R S 5,
AR R 2 5 SIS T R ISR 4

3.4.3 SRR T30
3431 LWRFSWAES

SEIGAY R 2.3 ALY 192 38 % E Y Ambisonics IR S, iEE{E 5 5RE{ES
WEEZRE T Q,(0°,0°), WHE 3-4 (a) fimm. —“HETAME LES, URKS
() 77 170 A B 08 RN B M, B R SRV BT B0 R ZE % SRT HRSEHi o

Horp, EEE S 0E 5N POE S @ 1 hi e A 5 35 (Mandarin Hearing In
Noise Test, MHINT) #RHEF1E & S, REEZCH 48 kHz, @it Ambisonics 4
FEND JE AT 2 0 . MEAEE S ONIE S SRR A, TR MHINT i85 RHCI -1
i (Long-term average spectrum, LTAS) , i LTAS MRS (e s b A7 080k, f#
2 M S B MUEEASERLZE A [R] R~ 2 A 2% (LB 3-4 () )

g, MEEESIRA R BT T R — A S AT R, WSS A TR A
[FB 40 N 1] Ambisonics #HATHRMAG I, HARKNMA—HIREEY BHEE. LREE 6
MRREAE, MAFAESE 2k, WAKAWER 3-1 Pros. I &0 s & S50 s ik
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HepE TR A8

FEALEARE i, %M 1 NSEFMA, BEE NIRRT B 55 88T 3%
B 264 2 09 0 B Ambisonics %ifih, FEIZASAEME T, 1EEE T LU R A 9R EE154e
BB AT R

i P AT B T4 75 A5 BE A L K it A5 & (Britel & Kjer Type 4189) BEAT A %
PRHE, W ORAS R FBCR AT T B S5 SRS 5 A R ORFFULAC, I ulid A2 i
FrolB 3-4 (b) o MK MRS 5 1S IR LR P IR FFAAL, [BEN 65 dBA, T
5 AP ISR S PR S OB, A RIS A IR AR AE R — KT

MHINTE &

-
QORI W
v 2
S . i
5
o
!

5
£
-

7l (dB)

y#ith(dB)

(b) 74 I R (c) SR AR A
Kl 3-4 5 1E B2 BE I & 9L 50N 5 B A R R

Fig. 3-4 The diagram and photos of the SRT measurement experiment
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R 3-1 FiEEZ B EN R SR R H1ER

Tab. 3-1 The list of experimental conditions for the SRT measurement

SIS AT HEEY I {5
1 IERT T A7 A IERTJT A7 5 A
2 0 it Ambisonics i IERTJT A7 5 4
3 1 ff Ambisonics H i BT .47 75
4 3 i Ambisonics i BT B 75
5 7 Bt Ambisonics it IERTJT A7 5 2
6 9 [t Ambisonics i IERTJT A7 5 4

3.4.32 KRR
ERsEEd, FAZIAEFEIME 12 X SRT (6 MK x2 EE) . SLHHT,
BEATLAZ B AR 2Rt i, DB RS2 50 2GR AR, IRl r I 45 )
AN A BRI ARG
R 3-2 Fu T Uy MR R T R SR
Tab. 3-2 The experimental sequence balanced with the Latin square matrix

Sanea AR AT

1 2 3 4 S5 6 7 8 9 10 11 12
S1 1 2 3 4 5 6 7 8 9 10 11 12
S2 2 3 4 5 6 7 & 9 10 11 12 1
S3 3 4 5 6 7 8 9 10 11 12 1 2
S4 4 5 6 7 8 9 10 11 12 1 2 3
SS 5 6 7 8 9 10 11 12 1 2 3 4
S6 6 7 & 9 10 11 12 1 2 3 4 5
S7 7 8 9 10 1 12 1 2 3 4 5 6
S8 & 9 10 11 12 1 2 3 4 5 6 7
S9 9 10 11 12 1 2 3 4 5 6 7 8
S10 o 11 12 1 2 3 4 5 6 7 8 9
S11 m 12 1 2 3 4 5 6 7 8 9 10
S12 21 2 3 4 5 6 7 8 9 10 11
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S TR R

SRT MRS, ZXHEXIEEHE 5N ABIEE RSP SLma R, X
Mg, BMRREENL D B HAE R AR MHINT ERVEQS 12 PAEE A
R, BANRIREE 20 BAELZNA T, B RiAET MR 1, TEREIRS 404
T INZRI AT o ARSI X P A 45 R R & 52, SR 12 x 12 A9 T 558
B oF SR R HEAT P Y BT TR R A nxon BJ5RE, b AT 565
RS n DAFKITER . AR A T TR 3-2 Pror. W] DUE SIS
B AR LI IR B BLRIR BRI, 8 G 1 32k Bl R SER AT P AR 5 ST AL
IS AN TR S8 26 A7 A2 AT I RIS o

SRR B & R R SRT, SRS an B 3-5 postte), #E43K SRT
MEr, RA—F— LR EENGHEREN . BAARRRE N

LATH1, £20 {221k 10.0 dB

&5
-

23 BA % R T A S

S

L

‘% s £

(a) SRTMR #AE S

or A e Py Y 'y A
\/YVYV e

SNR(dB)

=10 [~

_15 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Trials

(b) SRT [ 3& B i A2 7 51

K 3-5 SRT | & i #2751

Fig. 3-5 An example of the SRT measurement procedure
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(1) FRBOEYESES(ES, #1E SNR N 10 dB. il ERIEHTrEES, O
KRR BN A, S AR 32X 1 SR A S (] 3-5 (a) )
Ve BR B Fid . MHINT RRBOE S E 588 10107, A2l EE
XFFHADT 84, WHA KA E 4 T IEFR B, B IAA R B
fik. BB, A MEE R S IR SR T

(2) JE, WEZREREZEHSE, HEESESHEE, X% SNR, #%
WA, BIR—APKE SNR, &R, SR A BKM SNR.
FEASLI T, BRARYE LI R R A3, 55 0 255 2 AN Sk U T ik
HIP K2 8 dB, % 3 25 4 M i W HI Ky 4 dB, 28 5 AN
ZIEHKA 2 dB. [ mAR R IS R B S IR, BN S5 IE A
B RBARIOTE L, W 3-5 (b) R RLL 5 e s

(3) MPrEAT (20 8) FBGERE, HERE 8 MUT I SNR /E4 SRT
M 45

Bl 3-5 (b) J&rn T HAZAAFH — X SRT IS OL, S25d #2 i SNR Bl 5 52 A

RSB IER 5 AT AR, REBETRE, ISR 50% 5 15 IR A %X RF SNR.

3.5KIGHER
3.5.1 KEHERSK TR

FEIER ST, SIEFEAT T 144 X SRT MK (12 Z1K#E x 6 WAL x 2 A
B, ERKE NS BT, WA IEFA LA 124 SRT #dlikeA. 52
ik BN 3-6 FIAE T B BTR .

B AN FEAR KT B — IR Gt 25 51 FER I B R aA S i B 3 75
HAAE (Q3) HEE 25 HAarhiEl (QL) , HIMRELARE P (Q2) . kMK
FZ, B Q35 QI (M, AV AiEE (Interquartile range, IQR) , ‘Bt T #d& i)
BHORERE . MARAR B a0 S At 2R BeRR N2, 200k Bt 4 B K R B ME . [
I, AR I T A o DABOS R R R E A I b

M 3-6 FRTLAEEI, BR OB 25 1F41, BE# Ambisonics M EUERTE, SRT HUEH W
BRI T2 %4 (R IEHD 4R, KR UIE S50 B 20 =4
Fto MERERERAE, OB T SRT B RAK T HAth 26 1F, HEATERIT 2. WS
BRIEESRE, 0 FA 1 B2 4F T SRT B s fE i & T HAb s 2644 (B 3-6 1 0
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HepE TR A8

5 1B EED o X IR ATRESRET Ambisonics 248 N RN BRAENT &
DX IR N R —— 1 32 7 B 28 B AR T 5 XS, 477 75 4 [B) SR SRR N, 330
AFEAERIEIZE R BZEY K. 3 By 7 By 9 Wi 5225 5% AR 80E 42 R JE I B A 254,
PRHEZ P09 1.0« 191 0.8 5 0.6dB. HH1, 7Bk FAE DR EE, SEH
PRHEZE A B

SRT (dB)

|| || || || || ||
1]y 1B 3B TR 9y S
A 2514

K 3-6 H B BIE LIRS

Fig. 3-6 Experimental results of the SRT test

N TR AR AT REAT BT, FEBRAN I BB (T, B P B kAT
Gitortr, B2 Anderson-Darling IEASVERIGH B %26 SRT B EMFHIESS
i, I EIRITA %M T SRT W& SN, %M 1-6 (WL 3-1) MR p {5535
9036, 0.89. 0.69. 0.55. 0.050 5 0.29, ¥JKT 0.05, HHEsr&ESEN M, SHEH
#51 Q-Q (Quantile-Quantile) LKl 3-7, BEHIFR/ NI/ A0 CUFRAEIES 046D 19y
P, AR RREARBAE 1 AL, BRI DR RIS IES A, U B O AR
KRBt — % HZ b, WET T LG BIFTA &4 T AR AN T XML b, U8
B 3 AT I A S E IS0 A
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Oy
P 1B
0- "'""""'""""""""""'---------"-"";.-"-‘f::‘:--- 3|Zj|\
ﬁ - + + 7|3J/|\
&l + .
N LN * 9
H# Sl e 2
| ,_ff
-104 ----:/,,,-c"-"-/- -----------------------------------------------
' T T L
-10 -5 0
IEA LA

K 3-7 F B B SR B0 IS TR R 1 Q-Q K

Fig. 3-7 Q-Q plot of normality rest for SRT results of the experiment

RIG, MG IED /AN SRT 4 A7 I R EE W& JT 25 (repeated
measures ANOVA, rm ANOVA) , I (EHED 25 EE»m SRT. H
THAEAH LRI, K H Geisser-Greenhouse 57 1E % rm ANOVA HHTEREHFIE. rm
ANOVA Gt Rk 3-3 fix, 25 REBHAF LI %% SRT BA B2 52 [F(2.651,
29.16) = 7.652, p < 0.001]. #H—i@ it Tukey ¥F1E PG HLECHEAT SR A6, ST EE & %%
Rzl g S, AR (LK 3-6 TR OERL) TR

(D

(2)

(3)

1B 3005 7B BT SRT B& & 2554 (1Hp <0.05. 3B p <
0.001. 7 p <0.05) , H 7MEKS 3MERICEEXA, XEWREZR
HTE 1TFY. 3BRI 7 B Ambisonics B A (177 B FE 2 5K T 047 7 25 %
25, 7 W ERE B — P R S B — BN BT S AR
TRZERERR /N, AN 2 DA SE I A 52 1) 3 JURR A

9 BreEjf) SRT 52 F XM EFRITFREER (p=0.07) , ZFVFHEN
0.85dB, XXM EM (O RGE BB (S5 IEIEWE L OB B E 4%
T K

3B ETARAT T SRT B3 @ T OB ETL (p < 0.05) , BHIAM 3 BrE] 9 B
(I R T S B v B R SR . (H 1 BYR 9 B O G R X
B, (HZ35FY) SRT ZfH N 2.2 dB, ZEFEE K. XE&MT 1 FrEB K SRT
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HepE TR A8

WA RO, #0321 H A2 1B B8O B S s TR I, (HIX — 45 R

ENSYEE

(4) R4 0 rEY SRT HE M BAK T HAN LM, HES L, 0 &AL SRT

WEZKT 3MER (p<0.05 .

* 3-3 FiRHEZ BN E SR rm ANOVA Siit45

Tab. 3-3 Statistical results of the rm ANOVA for SRT measurement experiment

ESES SS BHE (dF) F p
T 464 933.85 5 765  <0.001
NIV 32.32 11 1.12 031
5% 134.90 55
gEE 32 WiHE R ML LB SD, 98T SD (445 8 kHz L4y ) 5 SRT

EAI A R A e, g5 R E 3-8 . EHEEALFRN 0. 1. 3. 7. 9 Y
Ambisonics B AIHIRE SD, AL bR NN 24 TR SRT G558 . aJLLES], Bk O
B Ambisonics s5-4b, HAHEBMSM SRT 5 SD EATFELM LIS, [FHELHNE

Xt SRT 5 SD #47#L &, #EMER EE =, N 0.79.

_2 L L L L L _2 L L L L
SRT =0.335D —8.43, R>*=0.79 SRT =0.265D —5.37, R*=0.79
-3 4 L _3 - B
o)
/-\_4- -_4- B
m
= o) o) ©
=
B -5 - -5 1 -
o) o)
-6 L _6 - B
o) o)
—7 T T T T T —7 T T T T
8 10 12 14 16 18 20 0 2 4 6 8 10
SD (dB) SD < 8 kHz (dB)

O 1. 3. 7. 9B Ambisonics O O Ambisonics

P 3-8 SRT-SD HIZk MEHL & 45 5

Fig 3-8 Linear fitting results of SRT to SD
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3.52 LIWEERTTIE

W ARFEARHT Ambisonics R4E (1B, 3 Bt FHFIEAEE TSR, W52
PSR A5 BIR AR, R—8W0 5 A H R4 K Ambisonics RFtHE KT 14H
KU FLEE R — 0718, 2 2 A 47 5 S (5] I # 8F] — M5 S 1) (Ambisonics X I 5
ANFE AR PRI A A AL RS BOMIE & 15 5 I I SN AU R
ST 3G T A 15 25 1 TR M

ERESNZ, ATARERE Ahrens 55 NS RAFAEZ —— AT THIBF FE RN,
Mg iR AR A A B LB A, Ambisonics B EUnt SRT o im0, b2z &
FIREVR T SEIG et B DX AR St v e 7S ] 58 H BT 5 B P g R, i
ANFEIBT L) Ambisonics REEFE; Ahrens SEIG 5 &M A —F T Ambisonics #E1T
SRR, AR, BEE 54 Ambisonics HUR, FEE—EMEEET L ¥
S E B AE S MR S T R A — e WS ) o0, XS A) 23 B AT R AR — E Y
AR (SRMD o BAASRUE, fEMRE 26 4F T, iE Ry suuEEOR, el
if SRM #B 73 kT M 5 BP0, X EVFARE 1 0 B s8R A T SRT R BE K P A M I =
sy, X—4585 Ahrens MISEI—F, AT SL50 K I V5 & AIE 75 4 BS I
BrEoet SRT A B30, UM REEY AL SRM. 55 —J7 1, 1 BirAl 3 Bir s EL
EEmbr i ER, B R SRMAEM, (HXMAN&AF T SRT BiE, EWEERK, X
HLAMTH] ENIE 1 22 3838 R0 5 TER 2 BIE FSENR HL SRM 521 B i

AR N LA F %0 Ambisonics R8Nl &) SRT KIM: BEEMEUE S, &
R AR PR HARIX I, (19474 a5 2 MIE R ILPRAC, REEY B E EMURERR,
LA O E, A BAEINER SRT #OL HSL RS E K, KB R5 (a1, 3
B> R 47 75 A AR S BT R R N R KB RS AR B HURA M R e [F I 51 AR BN
W51 SRM. fEfIIH] 218 Ambisonics B 1 1H & 15 5 IE MW L&A 250 b, Xt
X Ff UE A AL T ARSI DG . RSRIE T Ambisonics B UCH AR T & 15 5 BN SLIR T,
i ARE DT H B HE R RGN N TR ERATREM NS5, mh RgE Rk
UEEHEAG R0 s AR 2R G000 S 75 A P ) Szl A B, T O 22 38 A PRI R 11
W DX P SR IR P2 B0 o R SRR, 1% SR 45 SR AT X B - M A R
SRT BEHITE L, BLIN 75 2 2 9 B i B A e A RE UL BT IR AN 5278 Sk i, X
THARRINY 5, FIEBORZE R B BA AR, s8] sEA .
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3.6 ARE NG

KR EFH G Ambisonics B S HON H iR 7 5 EWUREN K R ITRE S, B
W FE T BB & B S B R . 1 Sd 1 BRI AT B AT TS
MEMAEY . WEHEWUE 5 5% DL R By A Z w3 — B m
Ambisonics E AL, Wit LIS, WE 7 12 4% F E 0B 2 9Fr Ambisonics
R LR IE S A N SRT, AT HO6 = 154 52 BUE M LE] . SEe
SRR, BrOMAL, SRT HUEFEMEELFEHEE, Hm B AEEARr. Hd, 1H.
3 7B E R SRT B m T2 54, IMERSSHEAULEEER, KM RS
HOHE AR M P B R BE K . KB R Gt O T RS T B T REVR T 2 4% 75 A R S B
WL, T 0 SRT 4648 R % B AR A SRT Hufi 5k 5AKF R GeRE 4 HU31 & i SRM %%
RAHIG . BN T kY Ambisonics (419 i) B I K 400 75 37 76 ] AR A3 Bails FL S
JEI) SRT WELERE, KK 2400 PR 22388 38 A PRI & DX I BR il 1y i L, o Jak an 45 S A
AR . X Ee S0 25 B J5 ST WAk R Ge iR Th S i B N SR (o ik B At
THIR AR
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SEVUE I3 R s S N I SRR

BOE o EIERET TROERE ZSEH
F=FEXS Ambisonics Fr#ON HBGR 7 5 5 R B BB FIRE AT T PPAG 2
K, SRIRAIRE R, BB BRI SRR TR EE AR, fEA
PR ETACA REAE K REAIE & A IRTE MW 5 S AR — 2. AR, SEBL R R
KEZ YDA G, KL RS LA X I — i, AR T
—RlORT I UL, SR A8 0y JR B R A BB SR REAT T Ak, BRAR T SRRRS
VP SR N S TR ) ST 2K

4158

£ 2.2.3 TN AR AT Ambisonics Zw RS IR F 23], =4 (3-D) Ambisonics
Sy EM, AREFTE NN, AR T NI ERIE s SR (N 1) 2
I, HBOE BRI FEAE A MR8 510 . R a e ZR(N +1D)° 2 N =
I, BEE N SRR, ST, AW T R R A A T ) 2 R R IR
TR B AR 0 U5 A e, FEKSPIE B IERT T, 5 0 A R I ) (Just
noticeable difference, JND) AT 1°01200, iij 7K ~F [ 1E §§ 7 A0 1 5 [l /) IND 29
3. 70020, Ak, T AR T AL E AR SS, AR SRR T b, O A A R 22 AR AR
AP B RnRZEE &P, gE BATIR, = 4E Ambisonics LN 4775 g8 (0 E K 5 S FR
W ARES] (I NHK 22.2 240 Wi AR R EARHEFEET E: (1D %
RN, PSR ERZ A SN A S, AR, R R
AL (1 60°% 90°) , ZZAEAMEFIMIXS Bms (20 SERn Ak @ w2 2 R AT B Y
(Ep 7 A E BB M o £, WIFEAKF I 30°. 60°554Kr & 0 ~F 1 B 3L
B3 B AR R (3D Wit RGN 7K VT A R ) 7 e e BURK, ko FLAth s B 14 75 U A 4y
PR JIARXS T 22, W5 of P VR A0 £ 2 FE A AR T O O AR 2 A

Xf¥ 48 (2-D) =ifr Ambisonics B, 41 2.2.3 A, N B 4B HE N ER R
MER 2N + 1 MR, BRI E KRS AE SN A Y, Gt Lilmi
TYEE K. R, —4E Ambisonics X 8 HBUAL T KPR AR, H B = 4E R R 2
Ambisonics 5% E BRI Z — 4, X RTWE Ak E SR A

GRTATIR, SERRAI R AR B 2 2 B M AT R, AR SCE S W s
Ambisonics HJRR G 7 75 dx M HI 2 2% (B 73 =450, H AT SR S 1X A
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Herg B RS 22 A3

FUREATBETE . A TSR — P 17 70 JE 37 75 4 B 50 ) = 4k 2 18] 75 B0 i, AR DR ALE iy P
MAEPEM R RTSE T, B g o =g B Uy o, R RS S b
W X CRAREAR TR ED ) E B0

AERINELZHIT: 4.2 T/ 7 EEBCH BRI, B w0 LA R
AL ROV S T B W) B R A U A kAl s 4.3 AR T IR ARG, $RH T —Fd
)7 JZ Ambisonics 7% [A] A BHEE, TR T BENERIBLT: 4.4 TR BENE B E S
177 WAL ), 4.5 W ATERAT 1 B4,

423810 B,
421 HEB¥r

SEPREIR AL, 15 SR SIE A A L@ R RS EABK . R R
fh, P AR EE B 47 75 B AR AR Q, TR R @, 40 AR AR R D B R B B B B, R
G E{ By by, bu) s FEREANMA G, by MEARRMNE L H GELD BN
FEES . Y4 S AL AT TE ¢ = 0° I, RGN RS . 02 840 A 77 2t
[ S B 47 76 2 228 5 A HE PRI 25 5, T T 4% M e P 1 K TR 47 7 B R 1K 22
SRFIBCLER . B0, BRI IEM CUBE R4150, FF2H R A0 30 B4 75 425
021 g 5 e B Tk K241 SOFE 24503, 7 [ 7 38 Tl K2 1) SCaLAr &%),
6] Ay e i 3 TR 2 P A B T 29 S 47 75 B A1) R g8

14 43 24 75 BB B EAT =48 Ambisonics AT, R4 75 48 R 1@ B 57
WA SE bR % 75 B FAD 20 AG IOFRIRAZEE, REBS I =% Ambisonics B4t Al REAEXT
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Fig. 5-2 Photos of the SOFE system, photos of the location experiment, and the GUI of the
sound fidelity evaluation experiment
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Fig. 5-3 The condition numbers of three mixed-order Ambisonics decoding matrices under the
SOFE system
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Tab. 5-2 The directions of virtual sources in the localization experiment

A o} 0, J7 R
FuOilr s -15° 0°, +90° 3
0° 0°, +5°, +45°, +50°, +90° 9
15° 0°, +90° 3
30° 0°, +45°, +£90° 5
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Fig. 5-4 The flow charts of localization and fidelity evaluation procedures, and diagram of listening
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Tab. 5-3 The directions of virtual sources in the sound fidelity evaluation experiment
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Fig. 5-5 The bar chart In-head localization rate and front-back confusion rates
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Fig. 5-7 Absolute azimuth localization errors of sound source in horizontal plane under centre
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under the centre listening condition
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Fig. 5-11 Results of the sound fidelity evaluation experiments
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Fig. 6-1 The time-domain waveform and long-time average spectrum of the dry signal
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Tab. 6-1 Sound absorption and scattering coefficients of materials in the concert hall model
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P, PR S S BTN A 9 B B R B 2 o[RS SR AN 5] 1% 2 80T 20O 1A S AT
Gihid, TR SO g 5 7 2 A AT O 2 (R RS2 o o S 5 AR A A A2 BORE FRVE
AN, PR S R MR s BB Tl YA At L, s A ¢ -
¢maX7 ¢cal >¢max

¢ = ¢cal (6' 1)
¢cal) qscal < ¢min

FE RV A A2, AR SR 7 AL 2 AE T, ASKE T LA AT 1B 2
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SEU 1B 7 AN A AN S AR A Y AR, TR SRR A X s (R R s

HARGHE: (1D BRI T-15°% 90 myaH, A 8 B 3-D Ambisonics %ifid, J&
WIS 3-DFOA %ifih: (20 RSN ALT-15°%2 60°5 [, ] 8 i 3-D HOA
itd, Jo WIS 3-DFOA et (3) FLHISCRHMMA AL T--15°% 30°7a [, &1 8B
3-D HOA %ih%, Ja¥ARFHEM 3-DFOA 4w (4 FHREHD A R4 2 /K-Fi,
8 Bt 2-D HOA Zwhd, JaiiHH ] 3-D FOA 4ifid; (5 FHIRHLT-15°% 901 £
JulH, {8 8 3-D Ambisonics Zift, J5 ML 2-D FOA Sty (J7iE WL 2.2.575)

(6) FHARIHT A 46 2K Fif, 5 8 By 2-D HOA 4wt J& #i 58 H 2-D FOA %
e (7> FISHALT-15°2 90> A i, {EH 8 B 3-D Ambisonics Zhidh, J&5 M1
[l 3-D FOA %wfidh, Bfij5¥sprA IBERES BEEAEN, TREG NFEERES, HIE
Ji 7 BRI

K 6-2 S5 BT IR S b T vk

Tab. 6-2 Reflections encoding methods of all stimuli in the experiment

Jr'5 L3 S SR A 3 LI P R S J 30 B A i i
1 [-15°, 90°] 8 B 3-D HOA 3-D FOA
2 [-15°, 60°] 8 i 3-D HOA 3-D FOA
3 [-15°, 30°] 8 i 3-D HOA 3-D FOA
4 [-0°, 0°] 8 B 2-D HOA 3-D FOA
5 [-15°,90°] 8 i 3-D HOA 2-D FOA
6 [-0°, 0°] 8 i 2-D HOA 2-D HOA
7 [-15°, 90°] 8 [ 3-D HOA HLiHiE ik 3-D FOA
8 [-15°, 90°] T 40 EE 3-D FOA
9 [-15°,90°] 3 By 3-D HOA 3-D FOA
10 [-15°,90°] 3-D FOA 3-D FOA
11 [-15°, 90°] 43/ Ambisonics 3-D FOA

P 2 WHE S AAEIRREE, BT A R e A& i md: - (D RHR
SHMA AL T-15°2 90°YG ], HIAF 5 54 SR FH Sl Qg hsy (S S 75 i S 31 dpe i
Wiz as EEARRRRD « (20 R SSHMMANLLT-15°% 90°Va [, K] 3-D FOA %ifi%,
JE WIS R 3-D FOA 4wfd:  (3) SRS LI T--15°% 90°yu [, KM 3 K 3-D
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7NE miFr Ambisonics AT WA T REAUT 5 2 R) AT 5T

HOA Zwhd, JE#i 5 R 3-D FOA %ifid;  (4) FHIRSHIAL T-15°% 90°7ulH, K
F 8 iy 3-D HOA %ifid, JalA/H K 3-D FOA 4wft; (5) FHASSIIMAAL T-15°%
90°7u [, EIAFSHF AR 4= Ambisonics B K.

SR A R B R 6-2 Fin, FTAE S EGREEA 68 dBA, IANE
FEREFIHC A E H371E 7 8% (Briiel & Kjer Type 4189) #EATRIHE.

T — A5 A AE T R WA EE TR B I 55 18] R AR AR AT I B, 8 A B AERE
L B35 5 8% (Briiel & Kjer Type 4189) & 5 HCHR 885 A Bk b o %7, I8 7 92
W, 2322 7%, MHABSUESIEANTES, KA PR ST T 1 RE L2 A S i

F AT RIS G B, AR AL FE WL ERUS BG5S, RS 3 E .

T 7 K i
3 1 3
2.5 2.5

0.5 0.5
0 T T T T T T 0 T . " I | |
125 250 500 1000 2000 4000 125 250 500 1000 2000 4000
I (Ha) 5% (Ho)
(@) SRHH FRIT Ty (b) S 1 KT T
10 1 1 1 1 1 10 1 | \ ) .

125 250 500 1000 2000 4000 125 250 500 1000 2000 4000

PiF (Hz) Bi# (Hz)
(©) 81 FRT Co (@ 931 SR €,
- = = —Odeontij  ——— [-15°, 30°]-3D ——— [-15°, 60°]-3D ——— [-15°, 90°]-2D — [-15°, 90°]-3D
Ul ——2D-2D ———2D3D 1IND 2 IND

P 6-3 S5 1 AT 26 A BSOS 32 04 Tao 5 Cso

Fig. 6-3 The T5 and Cy, values of virtual sound fields reproduced by all conditions in the
experiment 1
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{4 TTA Toolbox 73l 1 S AE VR M B[R] (1) Tao 5 FRAETE BT L 11 Ceo 138 o T 58 SN
FAEREEMVIGETR 5 dB 5 25 dB &b, A HhZEAMER 60 dB BT T B E, Cgo
ik i 8. 80 ms AT 5 80 ms J5 A& HBREE M LLAE, & X AisB3:

80 ms
p*(t)dt
Cso = 10log,o > (6-2)

/ p*(t)dt
80 ms

Horbp () Db N AR

3 1 1 1 1 1 L 3 L t I I I I
2.5 I ] _
Y R —Tt== I
~ < J 7\\7\\
& - -
) L 1.5 I
= =
1+ I Y _
0.5 I " _
. 0

12|5 25|O 50|0H IOIOO ZOIOO 40|00 12|5 25|0 50|0 IOI()O 20|00 40|00
B (Hz) Wi# (Hz)
(a) L2 HIRIT T (b) SL5E2 FET 5 1H] T,

10 10
5 L
2
)
o
0 4 L
5 T T T T T T ‘5 T T T T T T
125 250 500 1000 2000 4000 125 250 500 ) 1000 2000 4000
AR (Hz) P (Hz)
() 3282 HRIT Cy (d) 52562 ML) Gy
- - = =Odeonfli & 1/ Ambisonics 3 Ambisonics 8ffr Ambisonics
R4 ——— 77 JZAmbisonics 1 IND 2 JND

K 6-4 5256 2 P T SR A ELTRUE A A 7 ) Too 5 Cso

Fig. 6-4 The T5y and Cy, values of virtual sound fields reproduced by all conditions in the

experiment 2
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/N = Ambisonics R WAL T BT 3 1 43 R BRI AT

SRG 1 R ATE R ORI g R A 6-3 s, L2l T Odeon HH
T AT BN T 5 Cyo AL = XM [l — A IND 5Fif% IND HITE R, 1ENERS L,
HAToo 1 IND 92470 Too 11 5%, Cyo 1 IND N 1dB. 51K, HiF1%5 Odeon 1
HIN R IR bR B AR AR AR —3 . 7E 2000 Hz &% LA EATRTE I, i d 2640
[ R AR5 Odeon 17 HMSE REEA—F, BRZELE—/ IND LA . 7E LA
WM, FIIEIRS Odoen 45 H 1 ZEFE G L ARTEM A IND . £ 1000 Hz, AN[F] %A%
A Odeon /i HL45 REFEMNEN, oA REBILH A IND. FikiRZE
FIRERUE T, A SO S I 77 A AR RN 77 0 Odeon A—%, HESTRE
P55 TR Odeon fA7E 2 5o KU HEBUERAE, T 5 Coo M SIEHIFEAL T 1
IND I, {HF 55T 5% 1000 Hz 551 55 1A] 250 Hz 1) Cso ATEAXT BRI, i
1~ IND.

FAUH, SR 2 A R A R 2 R ] 6-4 Fian . MRS RS SEE 1
ST R, AR &S Odeon 7 HLAT R —3, 1EAMILT 2000 Hz 1= L 5
IEER T, MR 1, S8 2 AR KAX Ty 5 Co &8 E /N, B 8 By
Ambisonics HJIAE 1000 Hz 4bHI45 R AN, HAR 56 RIBENE BT —> IND.

6.3.3 200 I — R ERIN A e EX =6 s

SIS 1 RAE 5.3.4 Tl MUSHRA RRTER, ZEBAFEGE S 555G
SHHATR IR LEV #EATHT 0. LS 2 MEMB RS, BRI EE 3
K, ZRE BT EIAT 6 MAKIEL (2 551 x 3 EAED , LI LA
%‘;‘»

K

i, KRR 1.5 % 2 /N, 2R AT 20 0Bl sEaG, B2 B R RE ST
PR, T G 57 5T %of S 6 225 SR 325 s s

IR 6-5 Frar, SERHT, ZRE EARLT G, RN
LEV EA1JIZ5E MUSHRA lZk. 7& LEV BAIZRMATT, SLU0 0w o 13k 5283
B LEV &, )5, g BEREgdC, HRIERTT, 7 BT B A AN [F) A s
MfES. REESOHE: HIEMTR A SKKNTES. /8 8 B 2-D
Ambisonics HJRHIEKFH B 51734 4 {55 ] 8 B 3-D Ambisonics HJUH]
LA 4 N TAE5 . i 8 B 3-D Ambisonics 2% [ HH I 510 A ) 16
NFESULAEA 8 B 3-D Ambisonics B2 (B A M1 32 M TES, ER(E
5 (AL BB AR P 5 . 2 X RS S AT R PR B, BRI AR IR X 4
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FrEMESHE. MEEH#IT MUSHRA IZk, BTEiLZREARLKIESE MUSHRA
PP RAF A o 1 ZNZRE RS2 AE ML 58—k MUSHRA Ui, MUSHRA i+ 1)
5 IR LI AR [F], DR 4055 TR 2 AR BE AL, 2 2R ) 45 SR AN N B 2K 1) S 56 45

FEREE

LEVRAI 01 7] : 7]
BRI % % ke %
>
L
o LEVIXIUIZ| « 2 HEdtl55 0 o 2 fEAU N o FHURGEIE
« MUSHRA{IZ « 3 HK o« 3HE IR
MUSHRA MUSHRA MUSHRA MUSHRA MUSHRA 75 MUSHRA 75
LEVIFS) | ~ | LEVif46 LEVIFS) | ~ | LEVif46 FifE W1 FIE VS 6
TRIEES | - | SRIEIES | | SElEEy

(a) SEH IR K
SIELIESHIREFM AR 5

245 NaN NaN NaN NaN NaN NaN

BA
=2 _

80 ——

60 ——

40 ——

N ]
BE -
x5

|ttt et

(c) LI

K 6-5 SEEGIAE . MUSHRA PF7-484F 51 DL SE50 I A

Fig. 6-5 Diagram of the experimental produces, MUSHRA GUI, and the photo of the experiment

FE ISR R MUSHRA T, S2lE T 206 7ME 5 (RS 5 MRS 5
IR ZH A5 5 M 1A RO RS 52 5E ST, %IREM LEV 257
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/N = Ambisonics R WAL T BT 3 1 43 R BRI AT

IRNEAT VRS o MRAE 5 2 B SO s 7 K 2 ~ 6 (W3R 6-2) BEAT AT T AL i
IR, 22155 N RIS gRis 77 =0 VAT AT WA B0 R, A ORI i s S
Gmit 7 7 AT AT ALE RN, HAENR S S %G5 ZER K. WaEl 0 &
100 73, 0 73 iRfE 51 LEV 52%E SH[F, 100 703R 3 LEV ZIRK, %
P I B R P AR R L R 1 GUI B A 1y (ET6-5 (b) )« 7MHIE S
IR BEAL™ A, 2 s 4 A0 )RS 5, B R R Ak R
JBUREE B R BNAE 5 . 2R AR B B W RIS 5 )5 4 Re X AT 1P 4, BT
PP T ORIFIIN AT /7, AN REEE 3 aliA% 3l 336

6.3.4 258 2—F HA R ST E 7 5 T X 22 8] Re 2 Ml R Pl SR IR

SIS 2 AR AN 6-5 o, AR S5 SE 1AL, ESEE 2 v, 2l 7 20 f
S PR T AN RN LE L AT VR 0 SERR B 2 NS IRl SR, BRI EE 3K,
AR T BT 12 R SESS (2 piA) x 3 A x 2 BGH4ERE) o S 125, B
JeiEAT LEV KPR SR8, B8 6 MU WK BENLAE R, B85 HEAT A I 56 52 J
NGRS RS2, AN EGRGE R IR FN s (5 SRR, 0P s ANF. AN seie
20N 1.5 & 2 /P RIRERBAT 20 2 PIISER:, BRZE BRI RBUE T A,
PRIE I, T Gl 57 S MRS S0 25 SR R T

FEFE YR T8 FEVE 7> SER AT, 32k 7 E e R O BRI R T . AR,

JBCR KA IR FE KT TR 7 7 1 -30°48 30°30 FEl Py 7 10055 8] B 3 A (KR LA R 40 . 7
TR TH 7 67 1 -60° 2 60°TE [ N 4% 10045 7] K% 73 A1 F R 100 A U4 . 7E /KT T8 5 3 A1 -90° 2
90°7% [l A #% 10°%5 B B 23 A B R0 5 IR 2 . B3R R 40l 75 53509 8 [ 3-D Ambisonics H i
M55, X555 R AR M58 . 2R E 0 RIS 54T IR W w5t L
HERIEFX AR SHE.

FESES 2 1) MUSHRA WAy, 22X # FF 24 5 M55 CEFE 4 MIE S/ 14
SN S %G S) 5B ESHITR, EBBGISREES LEV M2 R/ NET
oy WEVERMAZ, S50 2 (1 MUSHRA MEREA i AES . WSS R0 8 ik
Sromis st 1. 9 10 A 11 (W3R 6-2) FATAIUTALE TR, S5 (55 N R
Zwis T 8 BAT I L G 5, BARDMREEY H. WEEA 0 £ 100 73, 0
SRS S 1) ASW B LEV 525 E 5 A[F, 100 4rFRm —#F £ R, Zid#FH s
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BT B L SR 10 GUUSE R IFSr. 5 /MM 5 I0HEIFRENL 5, 2 T
LT BRI VMR S R A R I LRI 5 .
G TP RIS 5 5 A REXS AT WA, /IR 5 (RIS 7 AR
L ZER

6.4KWHERS511L
6.4.1 SE4 1 £53R

S 1 IR 672 M EEE (TR x 25 x 3EE x 16 8% RE) , %
- AL [R-RIR AL A 48 MNMHRFEAS . A RERLEET 7 AR P4y 25
nE 6-6 i, FAFELENMA T L, KBS UL R R FMEE: P, Y
I EORN BV R, R T 1T PR I R D HE B B R B KA S A /ML, /NS
NESHEHAE . BT LUE B R B VAR LEV W ZEREECOK, 3 AR TR TR 5 (R
AT — 2

BE— D0 AR A R 2 rm ANOVA #4777 ZE 43T, A 30 DR K405 [ 5 K
KA, FHAd ] Geisser-Greenhouse % rm ANOVA #HATERER IE . AL 4l Sifs 5 N8
WEER, ENBRERZENS%, SR HNE, FIEAANG 3. Gitd
RN, ESRTIXT LEV VPO A7 75 2 3 22 7 [F(4.288, 201.5) = 65.35, p < 0.0001], %A
TSR PIGREE N 36.87%. AFRIEIEIANT LEV PF435A W2 52 [F(1.000, 47.00)
=1.164,p=0.2861], H _HAARNHFELHIER.

Jy< 1 I 1 1 1 1 1 1 I
DthO L-LJ 100 ;]

Z 80 U . L <0 4
60 - 60

40 A

LEViF4)
s

Z
;N
4 20 7 r 207
> .
S8l
— 0 T T 0
I R TN N R B B L R RN AN R VR C BS)
TS S S S TS S S S
5" 5" s 5"
S AR
HAE 5 B S
(a) BEF 4 SR T SRah 25 R (b) REFAFETE 55 [A) S 56 &5 IR

K 6-6 S35 1 a4l RARH ]

Fig. 6-6 The box plots of the experimental results of the experiment 1
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BE— DX RAT Tukey RIEMHfE 2 EIEL, BT RMGE MBA B 88, H
SHIEEEARA S HAER, BEEX R HEAT BN EL o 58 ST AN [R) T A Y
XPLEV 52N, XS EES (%55 R8]-15°, 90°1-3D) . [-15°, 60°1E 3N A yu
5[-15°, 30° UM A0 Bl =415 540, SR BRI mX%Aa 8% EE, XU
O ) 2 5 A0 91 B %o 2 ] R ) s e 5 R R

SR, R RS R 46 2 KPR (B 2D-3D %) , LEV MHISEES . [-
15°, 60°1f5 5 5[-15°, 30°15 5 5 A% (p(EH/NT0.0001) o LI, =5 Bk
F 2D Ambisonics B} (3D-2D %644) , LEVAHILSE LR EFEAZ 2 (p<0.0001) .
MR EE, TR IR BRI, S ETRH Z4EE N, X LEV M2 mFe g
T, 2D-3D 5 3D-2D I HBEEZER (p =0.908) . [ FHBRH _4EE A, LEV
%, WERTHAMPE R4 (p33/0T 0.0001) .

6.4.2 K4 2 £5R

SIS 2 BIRAZ A X LEV A U5 58 L PN BN 4E L #EAT4T 73, N EEE 3L 3145 480
ANVE B (5 I x 2 5% x 3 EH x 16 L% RE) , FNEM R E-jEE
) A 48 NMHRFEA . AFERERLEETE 5 AR R VR4 R 6-7 s, 467
Kl L5 B 6-6 1sE SUHIR. EIH AT UG BIA R EOVE M LEV 5 U5 56 B 1E 4078
PIAN REAUT AR IR, FE & RIT LA T, A [F) 5 SO 0 9 i 07 22 2 i
FEURTEREAN LEV SN, (ERE R, SR ERIEA 28, HZEEA VN,

XA 2 rm ANOVA 80 1 AR H 807245 b [ 2R A0 23 [A) B/ (LEV 5
WY sz, 253388, XIT LEV, R [F4, 188)=25.71, p < 0.0001]. J5
[AZEHY[F(1, 47) = 28.64, p < 0.001] & HAZ HAEH[F(4, 188) = 13.28, p < 0.0001]3) %} &k %01
SRR A RER . b, RSN LEV W BATE KIS, fRRE T 18.25%I11 5
RNE, B A ARRE T 2.21% 0 SR

#E—EX LEV IPF4r 3547 Tukey R IEM S5 2 HELEL, T3 (B SR BRI 1Y
FAEZLHAER, WA B IR R X AN [F RO A AT LU RIS SRIT R, Mks%
55 (BALAED) . 1Hr. 3B, 8B 3-D Ambisonics ] LEV W/ ¥ & E T 5%
F, p EY/NT 0.001. ESHEHEA)ZE Ambisonics FEA B& M LEV X5 (p =
0.990) . Ht—BHEREMM T LEV HIFENT, FEEMEW ETF, LEV B Z%E S,
1 Bt Ambisonics ] LEV Z R 1Fr B3 & T 8 B Ambisonics (p < 0.0001) . 3 B
Ambisonics P4 %3 =T 8 B Ambisonics (p <0.001)
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HE\ 0 T T T T T 0 T T T T T
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Fig. 6-7 The box plots of the experimental results of the experiment 2

TEFEIE 5 R 56 AF R, LEV IZEERAEVN, BWRXTILCRIL | BHME 5SS EES
574rZ Ambisonics Z [HH EE XA (p EH77/MT 0.0001 F1 0.01) o 1§55 3 B [a]
(p<0.05 , 8HrHISFZAWAAAEREZER (p<0.001)

PR TE BB EE RS LEV 25400, HII57 [F(4, 188) = 22.83, p < 0.0001]. J5[H]&
H[F(1, 47) = 15.27, p < 0.001]1 S HAZ HAEH[F(4, 188) = 4.197, p < 0.05]3% B2 R A
ARIFEW . Hodr, RS RN 75 R U8 VT BAT SRR, R T 15.36%IK AL
R, G5 AR ERE T 1.23%H) s R

FERMERITT, MHSEES (BT , 15 3Fr. 8 3-D Ambisonics
WEREETSBEESTSEES, p HBADT 0.0001. 2A00S %R E
Ambisonics F A W A RTEE XA (p=0.816) o #5255 F U E06 5 5
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FERIREm, BEENE T, ARG S %55 . 1B Ambisonics 175§ 95 B 72
1P E T 8 B Ambisonics (p < 0.05) o /A% 3 [ Ambisonics HIME E & T 8 B
Ambisonics (Z1H 5.4) , H-HZEZHEAEZE (p=0.741) .

TEFRTE G IR, PR SE FE VRO IR 2 BE AR /N, W LU OUR B 1 B Al 8 B B A
43 JZ Ambisonics 2 [A 23 X 5] (p A 737/MT 0.001 A1 0.05)

6.4.3 Z5R1TiL

SeH 1 25 SRR, RSO AT CESEE[-15°, 60°]85[-15°, 30°]) XtHT
AXH) LEV A0 B A 235, (F 2 5L S I 4 s 4 2 7P T R4 4 O
LEV IP7r 2% PR, X—IRUM: EESTHT, RE R M5 B 7 M
S FEXT LEV A 50, HT 58 2 Gont S5 i) B A i BE R AN BIURR, % LEV R ANRE I A K
BeAh, JEHARI R —4E S (3D-2D 25D B, LEV VP4 RIRE N R, Ui S s
Py v B2 A S0 2 R A TR 5 R RS B A . 1IX 5% LEV IR E WHAR, 1SO
3382-1 E U MR AN LEV EEHJE I RBAHDE (W 1.2375) , (HAHF T 5258 1 B
T RS E S B RRES N LEV.  FiRE5E LA 5 ) i S S 5

SEI 2 I, BEAE Ambisonics BE N 1 BHRTHE 8 [, AUETEEEA LEV $E4)
B S %S S, HASIRHMIYE Ambisonics HIEEWNAN TR FIREE S LEV
WA BIREIESHEES . X0 RRY, R RS R &3 #es X 7 5 58 B2
LEV & RN TR AN 5200, DRk 3 50N B R B PRI A S IR I RE 2 8k . (EASE =
e, TEFETE SR (R 3050 v, AR EBO7 2 AR P9 2 5N T3 R T
Yyse. XATReR BT SR O AR D AR, KB R G B AT 2
FNTESR, MR ARTEBAELSIN RS, R HOT R mE R,

gi b, RIRSEIGUESE T R S B LB S U AR 23 A AR A
ST A EHGEE, (B 2 KPS 5 8UR A BB, XN R T
P %, UFEGRIE LEV (MR BRARRECF A . 73— 07 M, PR =S B R IE AT 5
(¥ LEV 5 /Y5 58 BN 2, R #4285 Ambisonics N4, SLERIESE T AL
$2 i ¥5 Ambisonics J&—Fi G SR RE RS HU EBOTIE.

B RIE, AT SRR g5 RAUE T WA B LS R, A 2% 58 5 7 Sk
o [F1) F 1) ) % 5 2 504V A S0 1) 2 R HOnt 2 IR AN 12 AR o ik — 2D 5 52 s
(1] S 7 H 5t 2 TRL g o, S e I 2 IR R A, R ARHIE 58 AR SR 1 77 17
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6.5 RE /NG

225 B 58 S 75 £ 95 B Ambisonics 2T 2 HEADLT 25 24 i) S Ik 4 514 1 J
FEWFS. BB s, RS T ARSI E T LEV SR
LA FEAR AR B, 9208 — LUER S0 R A VR LEV B0, SR 3
PR SR b, 5 5 3T S 7 1 oS A4 905 L P 4 B R D P X ), A o T (1L
KT S EA A, RN, 5 R ST 75 4 53 B e 5 = S, B
YL LI 5. S 35 A O R R R O 2 LR B, SRR L B
Ambisonics 157N [F) F LIRS HEAT G . S0 4N BIAEAE T B ] RSP SRR B0
S5EET (A FF B 5 R T, AW RO R E AR R T
R SRR AX

BFFCLE BT, 57 1o A T B R A 2 ) R (R B 2, M L
R R AP (S EHO B, LEV W45 F W (EF 360 S S 0 EL A
7 NGRS R G O F O LEV (BN, sk, 0 R 55 a1
R ES SR LEV M. X — RIUIRIA T TN 7 B S v 15 B R b, R
S FTEAL R SR A AL SR T BRI . T — T, LR A A R B B
FEYETE R LEV AT, A SCIR 0402 Ambisonics 75 TN ALIFEE TG T 5545 5
AR ATy o BEAh, BTSRRI T AR R 2 P S A T A
P, TETR SR EAHE Y, (G 2R G0 ED AT A R TR T B A T U S A s
RGN

A B BT 50 AR AN AR AL T % A% 8] W 5 SR L B R ALt g e T R 2 A, o
Ambisonics REMBHMALE TABER® T EESE, RN AENILT R FNE
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MIFE T, AEORUERR AN A SEVE I BE Al b, ROPTRe SR m s BOR 2, PR AIC B U 4 1) SIS it e
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(1) 5, ETHEGERE R R, Bl 7 — KRB ZMIE 7 5 38 05 =
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WEPREVE . SON A RS, A R E L ZIEIE A . A 2
WIE R S PEm) 53, JRIE 7RG EE R et R, 8 FIR JER X BT A
TG SEIL T WREE . AL R ERT A R I . BB IS A R AR T 7 S S B HERR

(2) #R1 Ambisonics RE UL B O A AR 72 5 EURCRIIRZ I . 15 Jadtxt
B H05 Ambisonics HJBGRZERIFZIHEAT T2 M0, M5, Bt IR 7, By
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